Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Int J Biol Macromol ; 232: 123477, 2023 Mar 31.
Article in English | MEDLINE | ID: mdl-36731705

ABSTRACT

Probiotics have demonstrated various bioactive functions but poor storage and application stability, and encapsulation a promising method of increasing its viability. In this study, whey protein concentrate (WPC) and pectin (PEC) formed non-covalent complexes through electrostatic interaction at pH 3.0. The formed WPC-PEC complexes showed superior particle size, absolute potential, emulsification properties, and structural changes when PEC concentration was >0.8 % (w/v). This made them appropriate as a hydrophilic emulsifier to stabilize W/O/W emulsions. Then, Lacticaseibacillus rhamnosus, one representative of probiotics, was encapsulated in the internal aqueous phase of W/O/W emulsions. We obtained higher encapsulation efficiency (78.49 %) and smaller D4,3 (9.72 µm) with 0.8 % (w/v) PEC concentration. Encapsulation of Lacticaseibacillus rhamnosus in W/O/W emulsions improved its viability under harsh conditions, including 28 days storage at 4 °C, simulated pasteurization, and simulated gastrointestinal digestion. W/O/W emulsions stabilized by WPC-PEC non-covalent complexes further improved the survival of Lacticaseibacillus rhamnosus against various adverse conditions as compared to WPC. These findings suggest that the studied W/O/W emulsions systems have the potential to deliver probiotics in food substrates to enhance their viability during production processing, storage transportation, and digestion.


Subject(s)
Lacticaseibacillus rhamnosus , Pectins , Pectins/chemistry , Whey Proteins/chemistry , Emulsions/chemistry , Lacticaseibacillus , Pasteurization
2.
Food Funct ; 10(7): 4381-4395, 2019 Jul 17.
Article in English | MEDLINE | ID: mdl-31282516

ABSTRACT

In this work, fucoxanthin-oleic acid-protein complexes were constructed to improve the dispersibility and intestinal absorption of fucoxanthin in water. The in vivo absorption/antioxidant capacity was evaluated using a mouse model, and the binding processes were investigated using multi-spectroscopic methods and molecular docking. Results showed that the oleic acid-protein delivery system dramatically improved the absorption of fucoxanthin mainly in its original form. When the molar ratio of oleic acid to bovine serum albumin (BSA) was 4 : 1, the plasma response level of fucoxanthin at 4 h could reach 91.25% that of the pure soybean oil delivery system (336.9 pg mL-1vs. 369.2 pmol mL-1). Furthermore, the loading capacity of BSA to fucoxanthin was increased 5 times when oleic acid acted as a protein ligand. Fucoxanthin, oleic acid and BSA can form complexes with good water dispersibility (transmittance nearly 90% and particle size 265 nm) at the molar ratio of 5 : 4 : 1. Spectral analysis and molecular docking indicated that oleic acid and fucoxanthin have different binding domains in BSA and that fucoxanthin can bind to the hydrophobic cavity of BSA in a static manner. After administration of fucoxanthin-oleic acid-BSA complexes for 15 days in mice, only fucoxanthinol accumulation was discovered in eyes and the ocular antioxidant capability increased by 71.02%. These results suggest that the oleic acid-protein delivery system may be useful in facilitating the application of fat-soluble active substances to hydrophilic food systems.


Subject(s)
Eye/drug effects , Intestinal Absorption/drug effects , Oleic Acid/pharmacology , Water/chemistry , Xanthophylls/pharmacology , Animals , Antioxidants , Digestion , Female , Food Technology , Hydrophobic and Hydrophilic Interactions , Ligands , Mice , Mice, Inbred ICR , Models, Animal , Molecular Docking Simulation , Particle Size , Serum Albumin, Bovine/chemistry , Soybean Oil , Xanthophylls/blood , Xanthophylls/chemistry , beta Carotene/analogs & derivatives
3.
J Agric Food Chem ; 58(15): 8604-11, 2010 Aug 11.
Article in English | MEDLINE | ID: mdl-20681649

ABSTRACT

In this study, the possibility of producing stable O/W emulsions incorporating beta-carotene in oil droplets surrounded by multiple-layer interfacial membranes has been demonstrated. Emulsions were prepared using a two-stage process by homogenization, which relied on the adsorption of chitosan to anionic droplets coated with soybean soluble polysaccharides (SSPS). Results showed that the zeta-potential, particle size, and rheological properties of emulsions were greatly dependent on the chitosan concentration. The electrical charge on the droplets increased from -34 to 58.2 mV as the chitosan concentration was increased from 0 to 2 wt %, which indicated that chitosan adsorbed to the droplet surfaces. The mean particle diameter of the emulsions increased dramatically with the rise of chitosan concentration from 0 to 0.33 wt %, indicating the formation of large aggregated structures. At chitosan concentrations above 0.33 wt %, the mean particle diameter of emulsions decreased and reached a minimum value of 0.79 mum at a chitosan concentration of 0.5 wt %. Dynamic oscillatory shear tests indicated that the viscoelastic behavior could be enhanced by the adsorption of chitosan onto the SSPS-coated droplet surfaces. Chitosan concentration had a significant (p < 0.05) impact on the stability of beta-carotene. The least degradation occurred in the emulsion with chitosan concentration of 0.5%. These results implied that the physicochemical stability of beta-carotene emulsions has been improved by the adsorption of chitosan.


Subject(s)
Chemistry, Pharmaceutical , Chitosan/chemistry , Glycine max/chemistry , Plant Extracts/chemistry , Polysaccharides/chemistry , beta Carotene/chemistry , Chemical Phenomena , Drug Stability , Emulsions , Excipients/chemistry , Rheology
SELECTION OF CITATIONS
SEARCH DETAIL