Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Type of study
Language
Affiliation country
Publication year range
1.
J Lipid Res ; 54(4): 995-1010, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23378594

ABSTRACT

Transgenic tomato plants were constructed with an empty vector (EV) or a vector expressing an apoA-I mimetic peptide, 6F. EV or 6F tomatoes were harvested, lyophilized, ground into powder, added to Western diet (WD) at 2.2% by weight, and fed to LDL receptor-null (LDLR(-/-)) mice at 45 mg/kg/day 6F. After 13 weeks, the percent of the aorta with lesions was 4.1 ± 4%, 3.3 ± 2.4%, and 1.9 ± 1.4% for WD, WD + EV, and WD + 6F, respectively (WD + 6F vs. WD, P = 0.0134; WD + 6F vs. WD + EV, P = 0.0386; WD + EV vs. WD, not significant). While body weight did not differ, plasma serum amyloid A (SAA), total cholesterol, triglycerides, and lysophosphatidic acid (LPA) levels were less in WD + 6F mice; P < 0.0295. HDL cholesterol and paroxonase-1 activity (PON) were higher in WD + 6F mice (P = 0.0055 and P = 0.0254, respectively), but not in WD + EV mice. Plasma SAA, total cholesterol, triglycerides, LPA, and 15-hydroxyeicosatetraenoic acid (HETE) levels positively correlated with lesions (P < 0.0001); HDL cholesterol and PON were inversely correlated (P < 0.0001). After feeding WD + 6F: i) intact 6F was detected in small intestine (but not in plasma); ii) small intestine LPA was decreased compared with WD + EV (P < 0.0469); and iii) small intestine LPA 18:2 positively correlated with the percent of the aorta with lesions (P < 0.0179). These data suggest that 6F acts in the small intestine and provides a novel approach to oral apoA-I mimetic therapy.


Subject(s)
Apolipoprotein A-I/chemistry , Peptides/chemistry , Peptides/therapeutic use , Animals , Apolipoproteins E/deficiency , Apolipoproteins E/genetics , Atherosclerosis/drug therapy , Cholesterol/blood , Female , Hydroxyeicosatetraenoic Acids/blood , Intestine, Small/metabolism , Solanum lycopersicum/genetics , Solanum lycopersicum/metabolism , Lysophospholipids/blood , Mice , Mice, Inbred C57BL , Mice, Knockout , Peptides/genetics , Peptides/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Receptors, LDL/deficiency , Receptors, LDL/genetics , Triglycerides/blood
2.
Proc Natl Acad Sci U S A ; 107(46): 19997-20002, 2010 Nov 16.
Article in English | MEDLINE | ID: mdl-21041624

ABSTRACT

We examined whether reduced levels of Apolipoprotein A-I (apoA-I) in ovarian cancer patients are causal in ovarian cancer in a mouse model. Mice expressing a human apoA-I transgene had (i) increased survival (P < 0.0001) and (ii) decreased tumor development (P < 0.01), when compared with littermates, following injection of mouse ovarian epithelial papillary serous adenocarcinoma cells (ID-8 cells). ApoA-I mimetic peptides reduced viability and proliferation of ID8 cells and cis-platinum-resistant human ovarian cancer cells, and decreased ID-8 cell-mediated tumor burden in C57BL/6J mice when administered subcutaneously or orally. Serum levels of lysophosphatidic acid, a well-characterized modulator of tumor cell proliferation, were significantly reduced (>50% compared with control mice, P < 0.05) in mice that received apoA-I mimetic peptides (administered either subcutaneously or orally), suggesting that binding and removal of lysophosphatidic acid is a potential mechanism for the inhibition of tumor development by apoA-I mimetic peptides, which may serve as a previously unexplored class of anticancer agents.


Subject(s)
Apolipoprotein A-I/therapeutic use , Ovarian Neoplasms/drug therapy , Peptides/therapeutic use , Precancerous Conditions/drug therapy , Animals , Apolipoprotein A-I/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Disease Models, Animal , Drinking Behavior/drug effects , Female , Humans , Injections , Lysophospholipids/blood , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neoplasm Transplantation/pathology , Ovarian Neoplasms/blood , Ovarian Neoplasms/pathology , Peptides/pharmacology , Precancerous Conditions/pathology , Survival Analysis , Tumor Burden , Water
3.
Circulation ; 109(25): 3215-20, 2004 Jun 29.
Article in English | MEDLINE | ID: mdl-15197147

ABSTRACT

BACKGROUND: These studies were designed to determine the mechanism of action of an oral apolipoprotein (apo) A-I mimetic peptide, D-4F, which previously was shown to dramatically reduce atherosclerosis in mice. METHODS AND RESULTS: Twenty minutes after 500 microg of D-4F was given orally to apoE-null mice, small cholesterol-containing particles (CCPs) of 7 to 8 nm with pre-beta mobility and enriched in apoA-I and paraoxonase activity were found in plasma. Before D-4F, both mature HDL and the fast protein liquid chromatography fractions containing the CCPs were proinflammatory. Twenty minutes after oral D-4F, HDL and CCPs became antiinflammatory, and there was an increase in HDL-mediated cholesterol efflux from macrophages in vitro. Oral D-4F also promoted reverse cholesterol transport from intraperitoneally injected cholesterol-loaded macrophages in vivo. In addition, oral D-4F significantly reduced lipoprotein lipid hydroperoxides (LOOH), except for pre-beta HDL fractions, in which LOOH increased. CONCLUSIONS: The mechanism of action of oral D-4F in apoE-null mice involves rapid formation of CCPs, with pre-beta mobility enriched in apoA-I and paraoxonase activity. As a result, lipoprotein LOOH are reduced, HDL becomes antiinflammatory, and HDL-mediated cholesterol efflux and reverse cholesterol transport from macrophages are stimulated.


Subject(s)
Apolipoprotein A-I/pharmacology , Apolipoproteins E/deficiency , Arteriosclerosis/genetics , Cholesterol/metabolism , Hyperlipoproteinemia Type II/genetics , Lipoproteins, HDL/biosynthesis , Macrophages, Peritoneal/drug effects , Administration, Oral , Amino Acid Sequence , Animals , Apolipoprotein A-I/therapeutic use , Apolipoproteins E/genetics , Arteriosclerosis/blood , Aryldialkylphosphatase/blood , Biological Transport/drug effects , Cells, Cultured , Chemotaxis/drug effects , Coculture Techniques , Drug Evaluation, Preclinical , Female , High-Density Lipoproteins, Pre-beta , Humans , Hyperlipoproteinemia Type II/blood , Inflammation , Lipid Peroxidation/drug effects , Lipoproteins, HDL/blood , Macrophages, Peritoneal/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Molecular Sequence Data , Monocytes/cytology , Monocytes/drug effects , Monocytes/metabolism
4.
Circulation ; 108(14): 1735-9, 2003 Oct 07.
Article in English | MEDLINE | ID: mdl-14504179

ABSTRACT

BACKGROUND: Lecithin has been widely sold as a dietary supplement. 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) is a phospholipid that does not exist in nature and has been used in vitro to study lipid binding. We tested DMPC in vivo in apolipoprotein (apo) E-null mice. METHODS AND RESULTS: DMPC or soy or egg lecithin at 1.0 mg/mL was added to the drinking water of 4-week-old apoE-null female mice. Eight weeks later, HDL cholesterol levels and apoA-I levels were markedly increased in the mice that received DMPC. HDL function was also dramatically improved in the mice receiving DMPC, and there was a significant reduction in aortic lesions (P=0.021) in the DMPC mice but not in those receiving lecithin. Adding 1.0 mg/mL of DMPC to the drinking water of 10-month-old apoE-null female mice for 5 weeks caused regression of aortic sinus lesions (P=0.003). Adding 1.0 mg/mL DMPC to the drinking water of 6-month-old apoE-null male mice for 8 weeks significantly reduced aortic sinus lesion area (P=0.0031) and en face whole aorta lesion area (P=0.001), whereas adding the same concentrations of soy or egg lecithin did not significantly alter lesion area. Jejunal apoA-I synthesis and plasma apoA-I levels were increased 2- to 3-fold in mice receiving DMPC but not soy or egg lecithin. CONCLUSIONS: DMPC (but not lecithin) raises HDL cholesterol and apoA-I, improves HDL function, and prevents lesions or causes their regression in apoE-null mice.


Subject(s)
Arteriosclerosis/drug therapy , Cholesterol, HDL/blood , Dimyristoylphosphatidylcholine/therapeutic use , Lipoproteins, HDL/physiology , Administration, Oral , Animals , Apolipoprotein A-I/biosynthesis , Apolipoprotein A-I/blood , Apolipoproteins E/genetics , Arteriosclerosis/blood , Arteriosclerosis/pathology , Chemotaxis , Coculture Techniques , Dimyristoylphosphatidylcholine/administration & dosage , Dimyristoylphosphatidylcholine/pharmacology , Female , Male , Mice , Mice, Knockout , Monocytes/physiology
SELECTION OF CITATIONS
SEARCH DETAIL