Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
J Anim Sci ; 1022024 Jan 03.
Article in English | MEDLINE | ID: mdl-38227811

ABSTRACT

The microbiome has been linked to animal health and productivity, and thus, modulating animal microbiomes is becoming of increasing interest. Antimicrobial growth promoters (AGP) were once a common technology used to modulate the microbiome, but regulation and consumer pressure have decreased AGP use in food animals. One alternative to antimicrobial growth promoters are phytotherapeutics, compounds derived from plants. Capsaicin is a compound from the Capsicum genus, which includes chili peppers. Capsaicin has antimicrobial properties and could be used to manipulate the gastrointestinal microbiome of cattle. Both the rumen and fecal microbiomes are essential to cattle health and production, and modulation of either microbiome can affect both cattle health and productivity. We hypothesized that the addition of rumen-protected capsaicin to the diet of cattle would alter the composition of the fecal microbiome, but not the rumen microbiome. To determine the impact of rumen-protected capsaicin in cattle, four Holstein and four Angus steers were fed rumen-protected Capsicum oleoresin at 0 (Control), 5, 10, or 15 mg kg-1 diet dry matter. Cattle were fed in treatment groups in a 4 × 4 Latin Square design with a 21-d adaptation phase and a 7-d sample collection phase. Rumen samples were collected on day 22 at 0-, 2-, 6-, 12-, and 18-h post-feeding, and fecal swabs were collected on the last day of sample collection, day 28, within 1 h of feeding. Sequencing data of the 16s rRNA gene was analyzed using the dada2 pipeline and taxa were assigned using the SILVA database. No differences were observed in alpha diversity among fecal or rumen samples for either breed (P > 0.08) and no difference between groups was detected for either breed in rumen samples or for Angus steers in fecal samples (P > 0.42). There was a difference in beta diversity between treatments in fecal samples of Holstein steers (P < 0.01), however, a pairwise comparison of the treatment groups suggests no difference between treatments after adjusting for multiple comparisons. Therefore, we were unable to observe substantial overall variation in the rumen or fecal microbiomes of steers due to increasing concentrations of rumen-protected capsaicin. We do, however, see a trend toward increased concentrations of capsaicin influencing the fecal microbiome structure of Holstein steers despite this lack of significance.


The microbiome is the collection of microbes present in an animal's body and has been discovered to be directly connected to animal health and productivity. In production animals, such as feedlot cattle, the microbiome can be modulated by antimicrobials to promote growth, but increasing consumer pressure to reduce antimicrobial use has producers seeking alternatives. Capsaicin is a phytotherapeutic derived from chili peppers that can be used to modulate the microbiome due to its antimicrobial properties. Eight steers were fed rumen-protected Capsicum oleoresin to determine its effect on average daily gain. In addition, rumen and fecal samples were collected for microbiome testing. No differences were detected in the rumen microbiomes between cattle fed capsaicin (treatment) or those that received no capsaicin (control). While no overall effect was observed on the fecal microbiome of cattle fed different doses of capsaicin or control, we did observe changes in fecal beta diversity due to capsaicin treatment in Holstein steers fed greater doses. The fecal microbiome structure of Holsteins fed greater dosages of capsaicin differed from those fed control or low doses, as observed by the presence of two distinct clusters. This observation suggests an impact of greater doses of capsaicin treatment on microbiome structure.


Subject(s)
Anti-Infective Agents , Capsicum , Microbiota , Plant Extracts , Cattle , Animals , Capsicum/chemistry , Capsaicin/pharmacology , Rumen/physiology , RNA, Ribosomal, 16S/genetics , Animal Feed/analysis , Plant Breeding , Diet/veterinary
2.
Proc Natl Acad Sci U S A ; 112(34): 10663-8, 2015 Aug 25.
Article in English | MEDLINE | ID: mdl-26229078

ABSTRACT

A quarter of all anthropogenic methane emissions in the United States are from enteric fermentation, primarily from ruminant livestock. This study was undertaken to test the effect of a methane inhibitor, 3-nitrooxypropanol (3NOP), on enteric methane emission in lactating Holstein cows. An experiment was conducted using 48 cows in a randomized block design with a 2-wk covariate period and a 12-wk data collection period. Feed intake, milk production, and fiber digestibility were not affected by the inhibitor. Milk protein and lactose yields were increased by 3NOP. Rumen methane emission was linearly decreased by 3NOP, averaging about 30% lower than the control. Methane emission per unit of feed dry matter intake or per unit of energy-corrected milk were also about 30% less for the 3NOP-treated cows. On average, the body weight gain of 3NOP-treated cows was 80% greater than control cows during the 12-wk experiment. The experiment demonstrated that the methane inhibitor 3NOP, applied at 40 to 80 mg/kg feed dry matter, decreased methane emissions from high-producing dairy cows by 30% and increased body weight gain without negatively affecting feed intake or milk production and composition. The inhibitory effect persisted over 12 wk of treatment, thus offering an effective methane mitigation practice for the livestock industries.


Subject(s)
Cattle/physiology , Dietary Supplements , Gases , Lactation/drug effects , Methane/biosynthesis , Propanols/therapeutic use , Rumen/physiology , Animal Feed , Animals , Archaea/drug effects , Archaea/metabolism , Carbon Dioxide/analysis , Cattle/microbiology , Energy Intake , Female , Fermentation/drug effects , Greenhouse Effect , Hydrogen/analysis , Medicago sativa , Methane/analysis , Milk/chemistry , Rumen/microbiology , Weight Gain/drug effects , Zea mays
3.
J Environ Qual ; 38(6): 2438-48, 2009.
Article in English | MEDLINE | ID: mdl-19875800

ABSTRACT

Ammonia is an important air and water pollutant, but the spatial variation in its concentrations presents technical difficulties in accurate determination of ammonia emissions from animal feeding operations. The objectives of this study were to investigate the relationship between ammonia volatilization and delta15N of dairy manure and the feasibility of estimating ammonia losses from a dairy facility using chemical markers. In Exp. 1, the N/P ratio in manure decreased by 30% in 14 d as cumulative ammonia losses increased exponentially. Delta 15N of manure increased throughout the course of the experiment and delta15N of emitted ammonia increased (p<0.001) quadratically from -31 per thousand to -15 per thousand. The relationship between cumulative ammonia losses and delta15N of manure was highly significant (p<0.001; r2=0.76). In Exp. 2, using a mass balance approach, approximately half of the N excreted by dairy cows (Bos taurus) could not be accounted for in 24 h. Using N/P and N/K ratios in fresh and 24-h manure, an estimated 0.55 and 0.34 (respectively) of the N excreted with feces and urine could not be accounted for. This study demonstrated that chemical markers (P, K) can be successfully used to estimate ammonia losses from cattle manure. The relationship between manure delta15N and cumulative ammonia loss may also be useful for estimating ammonia losses. Although promising, the latter approach needs to be further studied and verified in various experimental conditions and in the field.


Subject(s)
Ammonia/analysis , Manure/analysis , Nitrogen/analysis , Animals , Cattle , Dairying , Nitrogen Isotopes/analysis , Phosphorus/analysis , Potassium/analysis , Volatilization
SELECTION OF CITATIONS
SEARCH DETAIL