Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Int Immunopharmacol ; 83: 106449, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32278128

ABSTRACT

Acute Exacerbation of Chronic Obstructive Pulmonary Disease (AECOPD) is an irreversible inflammatory airways disease responsible for global health burden, involved with a complex condition of immunological change. Exacerbation-mediated neutrophilia is an important factor in the pathogenesis of cigarette smoke-induced AECOPD. Ginsenoside Rg3, a red-ginseng-derived compound, has multiple pharmacological properties such as anti-inflammatory and antitumor activities. Here, we investigated a protective role of Rg3 against AECOPD, focusing on neutrophilia. 14-week-cigarette smoke (CS) exposure and non-typeable Haemophilus inflenzae (NTHi) infection were used to establish the AECOPD murine model. Rg3 (10, 20, 40 mg/kg) was administered intragastrically from the 12th week of CS exposure before infection, and this led to improved lung function and lung morphology, and reduced neutrophilic inflammation, indicating a suppressive effect on neutrophil infiltration by Rg3. Further investigations on the mechanism of Rg3 on neutrophils were carried out using bronchial epithelial cell (BEAS-2B) and neutrophil co-culture and transepithelial migration model. Pre-treatment of neutrophils with Rg3 reduced neutrophil migration, which seemed to be the result of inhibition of phosphatidylinositol (PtdIns) 3-kinases (PI3K) activation within neutrophils. Thus, Rg3 could inhibit exacerbation-induced neutrophilia in COPD by negatively regulating PI3K activities in neutrophils. This study provides a potential natural drug against AECOPD neutrophil inflammation.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Ginsenosides/therapeutic use , Haemophilus Infections/therapy , Haemophilus influenzae/physiology , Lung/pathology , Pulmonary Disease, Chronic Obstructive/therapy , Respiratory Mucosa/metabolism , Animals , Cells, Cultured , Cigarette Smoking/adverse effects , Disease Models, Animal , Disease Progression , Female , Humans , Immune System Diseases , Leukocyte Disorders , Lung/immunology , Mice , Mice, Inbred BALB C , Panax/immunology , Phosphatidylinositol 3-Kinases/metabolism
2.
Int J Mol Sci ; 20(17)2019 Aug 28.
Article in English | MEDLINE | ID: mdl-31466312

ABSTRACT

The heterogeneity of asthma involves complex pathogenesis leading to confusion regarding the choice of therapeutic strategy. In the clinic, asthma is commonly classified as having either eosinophilic asthma (EA) or non-eosinophilic asthma (NEA) phenotypes. Microbiota colonizing in airways has been demonstrated to induce distinct phenotypes of asthma and the resistance to steroids. Rhodiola wallichiana var. cholaensis (RWC) has the potential to alleviate asthmatic inflammation according to recent studies, but its pharmacological mechanisms remain unclarified. In our study, murine asthmatic phenotypes were established and treated with RWC and/or dexamethasone (DEX). Combined treatment with RWC and DEX could improve spirometry and airway hyperresponsiveness (AHR) in asthmatic phenotypes, alleviate steroid resistance in NEA, and reduce the inflammatory infiltration of the both phenotypes. The combined treatment increased Th1, regulated the imbalance of Th2/Th1, and decreased the related cytokines in EA. As for NEA, the combined treatment reduced Th17 and promoted the accumulation of regulatory T cells (Tregs) in lung. A microbiome study based on 16S rDNA sequencing technique revealed the significantly changed structure of the lower airway microbiota after combined treatment in NEA, with 4 distinct genera and 2 species identified. OPLS-DA models of metabolomics analysis based on UPLC-Q/TOF-MS technique identified 34 differentiated metabolites and 8 perturbed metabolic pathways. A joint multiomics study predicted that the colonized microbiota in airways might be associated with susceptibility of asthma and steroid resistance, which involved systematic and pulmonary metabolic perturbation. In summary, the pharmacological network of RWC included the complicated interaction mechanisms of immune regulation, microbiota change, and metabolic perturbation.


Subject(s)
Asthma/drug therapy , Dexamethasone/therapeutic use , Glucocorticoids/therapeutic use , Plant Extracts/therapeutic use , Rhodiola/chemistry , Animals , Asthma/pathology , Cytokines/genetics , Cytokines/metabolism , Dexamethasone/administration & dosage , Dexamethasone/pharmacology , Drug Resistance , Drug Therapy, Combination , Female , Glucocorticoids/administration & dosage , Glucocorticoids/pharmacology , Lung/drug effects , Lung/microbiology , Lymphocyte Subsets/drug effects , Mice , Mice, Inbred BALB C , Microbiota/drug effects , Phenotype , Plant Extracts/administration & dosage , Plant Extracts/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL