Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Anal Chim Acta ; 1280: 341868, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37858568

ABSTRACT

Sensitive and precise determination of virulent foodborne pathogens is significant for food safety. Herein, an ultrasensitive photoelectrochemical (PEC) bioanalysis was developed using the endogenous adenosine triphosphate (ATP)-responded Au@Cu2O core-shell nanocubes (Au@Cu2O NCs) to measure Escherichia coli O157: H7 (E. coli O157:H7) in food. Briefly, the phage-functionalized gold wire was used to specifically recognize the target pathogen. With the bacteriolysis of lysozyme, the endogenous ATP molecules were emitted from the captured target bacteria and enriched by another ATP aptamer-modified gold wire. Following the exchange with complementary DNA (cDNA) chains, the bonded ATP would be released. It could simultaneously etch the Au@Cu2O NCs and compete with external circuit electrons to combine photogenerated holes on the Au@Cu2O NCs-modified screen-printed electrode. With the synergy of the two signal amplification mechanisms, a significant attenuation of photocurrent signal appeared even with femtomolar ATP. Therefore, the purpose of ultrasensitive determination of E. coli O157:H7 was realized, which depended on the endogenous ATP rather than exogenous signal probes. The proposed biosensor presented a good analysis performance within 10-106 CFU/mL with a detection limit of 5 CFU/mL. Besides, its specificity, repeatability, and stability were also investigated and acceptable. The detection results for food samples matched well with the results detected by the plate counting method. This work gives an innovative and sensitive signal amplification strategy for PEC bioassays in foodborne pathogens detection.


Subject(s)
Biosensing Techniques , Escherichia coli O157 , Escherichia coli O157/genetics , Adenosine Triphosphate , Oligonucleotides , Gold/chemistry , Biosensing Techniques/methods , Food Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL