Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 100
Filter
Add more filters

Complementary Medicines
Country/Region as subject
Publication year range
1.
Phytomedicine ; 128: 155431, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38537440

ABSTRACT

BACKGROUND: Non-small cell lung cancer (NSCLC) remains at the forefront of new cancer cases, and there is an urgent need to find new treatments or improve the efficacy of existing therapies. In addition to the application in the field of cerebrovascular diseases, recent studies have revealed that tanshinone IIA (Tan IIA) has anticancer activity in a variety of cancers. PURPOSE: To investigate the potential anticancer mechanism of Tan IIA and its impact on immunotherapy in NSCLC. METHODS: Cytotoxicity and colony formation assays were used to detect the Tan IIA inhibitory effect on NSCLC cells. This research clarified the mechanisms of Tan IIA in anti-tumor and programmed death-ligand 1 (PD-L1) regulation by using flow cytometry, transient transfection, western blotting and immunohistochemistry (IHC) methods. Besides, IHC was also used to analyze the nuclear factor of activated T cells 1 (NFAT2) expression in NSCLC clinical samples. Two animal models including xenograft mouse model and Lewis lung cancer model were used for evaluating tumor suppressive efficacy of Tan IIA. We also tested the efficacy of Tan IIA combined with programmed cell death protein 1 (PD-1) inhibitors in Lewis lung cancer model. RESULTS: Tan IIA exhibited good NSCLC inhibitory effect which was accompanied by endoplasmic reticulum (ER) stress response and increasing Ca2+ levels. Moreover, Tan IIA could suppress the NFAT2/ Myc proto oncogene protein (c-Myc) signaling, and it also was able to control the Jun Proto-Oncogene(c-Jun)/PD-L1 axis in NSCLC cells through the c-Jun N-terminal kinase (JNK) pathway. High NFAT2 levels were potential factors for poor prognosis in NSCLC patients. Finally, animal experiments data showed a stronger immune activation phenotype, when we performed treatment of Tan IIA combined with PD-1 monoclonal antibody. CONCLUSION: The findings of our research suggested a novel mechanism for Tan IIA to inhibit NSCLC, which could exert anti-cancer effects through the JNK/NFAT2/c-Myc pathway. Furthermore, Tan IIA could regulate tumor PD-L1 levels and has the potential to improve the efficacy of PD-1 inhibitors.


Subject(s)
Abietanes , Carcinoma, Non-Small-Cell Lung , Endoplasmic Reticulum Stress , Lung Neoplasms , NFATC Transcription Factors , Abietanes/pharmacology , Carcinoma, Non-Small-Cell Lung/drug therapy , Animals , Humans , Lung Neoplasms/drug therapy , Endoplasmic Reticulum Stress/drug effects , Mice , NFATC Transcription Factors/metabolism , Cell Line, Tumor , Antineoplastic Agents, Phytogenic/pharmacology , Proto-Oncogene Mas , B7-H1 Antigen/metabolism , Xenograft Model Antitumor Assays , Programmed Cell Death 1 Receptor , Immunotherapy/methods , JNK Mitogen-Activated Protein Kinases/metabolism , A549 Cells , Mice, Nude , Mice, Inbred BALB C , Proto-Oncogene Proteins c-myc/metabolism , Male , Female
2.
Cell Discov ; 10(1): 28, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38472169

ABSTRACT

Due to a rapidly aging global population, osteoporosis and the associated risk of bone fractures have become a wide-spread public health problem. However, osteoporosis is very heterogeneous, and the existing standard diagnostic measure is not sufficient to accurately identify all patients at risk of osteoporotic fractures and to guide therapy. Here, we constructed the first prospective multi-omics atlas of the largest osteoporosis cohort to date (longitudinal data from 366 participants at three time points), and also implemented an explainable data-intensive analysis framework (DLSF: Deep Latent Space Fusion) for an omnigenic model based on a multi-modal approach that can capture the multi-modal molecular signatures (M3S) as explicit functional representations of hidden genotypes. Accordingly, through DLSF, we identified two subtypes of the osteoporosis population in Chinese individuals with corresponding molecular phenotypes, i.e., clinical intervention relevant subtypes (CISs), in which bone mineral density benefits response to calcium supplements in 2-year follow-up samples. Many snpGenes associated with these molecular phenotypes reveal diverse candidate biological mechanisms underlying osteoporosis, with xQTL preferences of osteoporosis and its subtypes indicating an omnigenic effect on different biological domains. Finally, these two subtypes were found to have different relevance to prior fracture and different fracture risk according to 4-year follow-up data. Thus, in clinical application, M3S could help us further develop improved diagnostic and treatment strategies for osteoporosis and identify a new composite index for fracture prediction, which were remarkably validated in an independent cohort (166 participants).

3.
Biomed Pharmacother ; 173: 116379, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38452656

ABSTRACT

BACKGROUND: Microglia-mediated neuroinflammation is an important pathological feature in many neurological diseases; thus, suppressing microglial activation is considered a possible therapeutic strategy for reducing neuronal damage. Oxyimperatorin (OIMP) is a member of furanocoumarin, isolated from the medicinal herb Glehnia littoralis. However, it is unknown whether OIMP can suppress the neuroinflammation. PURPOSE: To investigate the neuroprotective activity of oxyimperatorin (OIMP) in LPS-induced neuroinflammation in vitro and in vivo models. METHODS: In vitro inflammation-related assays were performed with OIMP in LPS-induced BV-2 microglia. In addition, intraperitoneal injection of LPS-induced microglial activation in the mouse brain was used to validate the anti-neuroinflammatory activity of OIMP. RESULTS: OIMP was found to suppress LPS-induced neuroinflammation in vitro and in vivo. OIMP significantly attenuated LPS-induced the production of free radicals, inducible nitric oxide synthase, cyclooxygenase-2, and pro-inflammatory cytokines in BV-2 microglia without causing cytotoxicity. In addition, OIMP could reduce the M1 pro-inflammatory transition in LPS-stimulated BV-2 microglia. The mechanistic study revealed that OIMP inhibited LPS-induced NF-κB p65 phosphorylation and nuclear translocation. However, OIMP did not affect LPS-induced IκB phosphorylation and degradation. In addition, OIMP also was able to reduce LPS-induced microglial activation in mice brain. CONCLUSION: Our findings suggest that OIMP suppresses microglia activation and attenuates the production of pro-inflammatory mediators and cytokines via inhibition of NF-κB p65 signaling.


Subject(s)
Microglia , NF-kappa B , Animals , Mice , NF-kappa B/metabolism , Microglia/metabolism , Lipopolysaccharides/pharmacology , Neuroinflammatory Diseases , Cell Line , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/metabolism , Cytokines/metabolism , Nitric Oxide Synthase Type II/metabolism , Nitric Oxide/metabolism
4.
J Ethnopharmacol ; 322: 117577, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38104877

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Modified Biejia Jianwan (M-BJJW), a Traditional Chinese Medicine (TCM) decoction, has exhibited great potential in treating hepatocellular carcinoma (HCC). However, its underlying functional mechanism still remains unknown. AIM OF THE STUDY: The study aimed to explore the anti-hepatocarcinogenic effects of M-BJJW, specifically its influence on PD-L1-mediated immune evasion in hypoxic conditions, and elucidate the related molecular mechanisms in HCC. MATERIALS AND METHODS: To investigate the therapeutic efficacy and mechanisms underlying M-BJJW's effects on HCC, we employed a diethylnitrosamine (DEN)-induced rat model maintained for 120 days. Following model establishment, flow cytometry was utilized to assess the distribution of immune cell populations in peripheral blood, spleens, and tumor tissues after M-BJJW administration. Simultaneously, enzyme-linked immunosorbent assays (ELISA) were conducted to analyze cytokine profiles in serum samples. Immunohistochemistry was employed to determine the expression levels of crucial proteins within tumor tissues. Furthermore, HCC cells exposed to CoCl2 underwent Western blot analysis to validate the expression levels of HIF-1α, PD-L1, STAT3, and nuclear factor kappa B (NF-κB) p65. The modulatory effects of STAT3 and NF-κB p65 were investigated using specific inhibitors and activators in wild-type cell lines. High-performance liquid chromatography coupled with mass spectrometry (HPLC/MS) was utilized to identify the chemical constituents present in M-BJJW-medicated serum. The immunomodulatory properties and the anti-tumor activities of M-BJJW were evaluated by co-culturing with peripheral blood mononuclear cells (PBMC) and the CCK-8 assay. Additionally, we assessed M-BJJW's impact on hypoxia-induced alterations in HCC cell lines using immunofluorescence and Western blot assessments. RESULTS: M-BJJW exhibited substantial therapeutic advantages by effectively alleviating pathological deterioration within the HCC microenvironment. In the DEN-induced rat model, M-BJJW administration notably reduced tumor growth. Flow cytometry analyses revealed an increased proportion of Cytotoxic T lymphocytes (CTLs) accompanied by a simultaneous decrease in regulatory T cells (Tregs). ELISA data supported a marked decrease in pro-inflammatory cytokines, including interleukin-6 (IL-6), interleukin-10 (IL-10), and tumor necrosis factor α (TNF-α). Immunohistochemistry confirmed the suppressive effect of M-BJJW on the expression of HIF-1α and PD-L1. Notably, western blotting unveiled the role of HIF-1α in regulating PD-L1 expression via the STAT3 and NF-κB signaling pathways in HCC cell lines, which was validated using activators and inhibitors of STAT3 and NF-κB. The CCK-8 assay and co-culture techniques demonstrated the anti-tumor activity of M-BJJW. Immunofluorescence and western blotting further confirmed that M-BJJW-containing serum dose-dependently inhibited HIF-1α, PD-L1, p-STAT3, and p-p65 in hypoxic HCC cell lines. CONCLUSIONS: M-BJJW demonstrates significant therapeutic potential against HCC by influencing the hypoxic microenvironment, thereby regulating the immunosuppressive milieu. Specifically, M-BJJW modulates the HIF-1α/STAT3/NF-κB signaling pathway, leading to reduced PD-L1 expression and an elevated ratio of cytotoxic T lymphocytes (CTLs), while concurrently decreasing T regulatory cells (Tregs) and immunosuppressive factors. These synergistic effects aid in countering PD-L1-mediated immune evasion, presenting compelling pharmacological evidence supporting the clinical application of M-BJJW as a therapeutic approach for HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Rats , Animals , NF-kappa B/metabolism , Carcinoma, Hepatocellular/metabolism , Leukocytes, Mononuclear/metabolism , Liver Neoplasms/pathology , B7-H1 Antigen/metabolism , Immune Evasion , Sincalide/pharmacology , Signal Transduction , Tumor Microenvironment
5.
BMC Complement Med Ther ; 23(1): 361, 2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37833759

ABSTRACT

OBJECTIVE: The primary objective of this study is to elucidate the molecular mechanism underlying the reversal of peritoneal fibrosis (PF) by Danshenol C, a natural compound derived from the traditional Chinese medicine Salvia miltiorrhiza. By comprehensively investigating the intricate interactions and signaling pathways involved in Danshenol C's therapeutic effects on PF, we aim to unveil novel insights into its pharmacological actions. This investigation holds the potential to revolutionize the clinical application of Salvia miltiorrhiza in traditional Chinese medicine, offering promising new avenues for the treatment of PF and paving the way for evidence-based therapeutic interventions. METHODS: Firstly, we utilized the YaTCM database to retrieve the structural formula of Danshenol C, while the SwissTargetPrediction platform facilitated the prediction of its potential drug targets. To gain insights into the genetic basis of PF, we acquired the GSE92453 dataset and GPL6480-9577 expression profile from the GEO database, followed by obtaining disease-related genes of PF from major disease databases. R software was then employed to screen for DEG associated with PF. To explore the intricate interactions between Danshenol C's active component targets, we utilized the String database and Cytoscape3.7.2 software to construct a PPI network. Further analysis in Cytoscape3.7.2 enabled the identification of core modules within the PPI network, elucidating key targets and molecular pathways critical to Danshenol C's therapeutic actions. Subsequently, we employed R to perform GO and KEGG pathway enrichment analyses, providing valuable insights into the functional implications and potential biological mechanisms of Danshenol C in the context of PF. To investigate the binding interactions between the core active components and key targets, we conducted docking studies using Chem3D, autoDock1.5.6, SYBYL2.0, and PYMOL2.4 software. We applied in vivo and in vitro experiments to prove that Danshenol C can improve PF. In order to verify the potential gene and molecular mechanism of Danshenol C to reverse PF, we used quantitative PCR, western blot, and apoptosis, ensuring robust and reliable verification of the results. RESULTS: ① Wogonin, sitosterol, and Signal Transducer and Activator of Transcription 5 (STAT5) emerged as the most significant constituents among the small-molecule active compounds and gene targets investigated. ②38 targets intersected with the disease, among which MAPK14, CASP3, MAPK8 and STAT3 may be the key targets; The results of GO and KEGG analysis showed that there was a correlation between inflammatory pathway and Apoptosis. ④Real-time PCR showed that the mRNA expressions of MAPK8 (JNK1), MAPK14 (P38) and STAT3 were significantly decreased after Danshenol C treatment (P < 0.05), while the mRNA expression of CASP3 was significantly increased (P < 0.05)⑤Western blot showed that protein expressions of CASP3 and MAPK14 were significantly increased (P < 0.05), while the expression of STAT3 and MAPK8 was decreased after Danshenol C treatment (P < 0.05). ⑥There was no significant difference in flow analysis of apoptosis among groups. CONCLUSION: The findings suggest that Danshenol C may modulate crucial molecular pathways, including the MAPK, Apoptosis, Calcium signaling, JAK-STAT signaling, and TNF signaling pathways. This regulation is mediated through the modulation of core targets such as STAT3, MAPK14, MAPK8, CASP3, and others. By targeting these key molecular players, Danshenol C exhibits the potential to regulate cellular responses to chemical stress and inflammatory stimuli. The identification of these molecular targets and pathways represents a significant step forward in understanding the molecular basis of Danshenol C's therapeutic effects in PF. This preliminary exploration provides novel avenues for the development of anti-PF treatment strategies and the discovery of potential therapeutic agents. By targeting specific core targets and pathways, Danshenol C opens up new possibilities for the development of more effective and targeted drugs to combat PF. These findings have the potential to transform the landscape of PF treatment and offer valuable insights for future research and drug development endeavors.


Subject(s)
Mitogen-Activated Protein Kinase 14 , Peritoneal Fibrosis , Humans , Caspase 3 , Apoptosis , RNA, Messenger
6.
BMC Geriatr ; 23(1): 695, 2023 10 26.
Article in English | MEDLINE | ID: mdl-37880590

ABSTRACT

BACKGROUND: Individuals with mild cognitive impairment are at high risk of developing dementia. Dance therapy has promising applications in delaying cognitive decline. However, the effectiveness of dance therapy for older adults with mild cognitive impairment is unclear. The objective of this review was to evaluate the effectiveness of dance therapy on global cognitive function, specific cognitive subdomains, quality of life, and mental health in older adults with mild cognitive impairment to enrich health management strategies for dementia. METHODS: Electronic databases and grey literature were searched from inception up to September 23, 2023. The language was limited to English and Chinese. Relevant studies were screened and assessed for risk of bias. A meta-analysis and subgroup analyses stratified by measurement instrument, dance type, intervention duration, and frequency were conducted using the STATA 16.0 software. This review was conducted in accordance with the PRISMA guidelines. RESULTS: Ten studies involving 984 participants aged 55 years and over who met the eligibility criteria were included. Dance therapy significantly improved global cognitive function, memory, executive function, attention, language, and mental health (i.e., depression and neuropsychiatric symptoms). However, the effects of dance therapy on processing speed, visuospatial ability, and quality of life in older adults with mild cognitive impairment remain inconclusive. Moreover, dance interventions of longer duration (> 3 months) improved global cognition more than shorter interventions. CONCLUSION: This review reported that dance therapy was effective in improving global cognitive function, memory, executive function, attention, language, and mental health (i.e., depression and neuropsychiatric symptoms). Hence, it may be an effective non-pharmacological complementary treatment for older adults with mild cognitive impairment.


Subject(s)
Cognitive Dysfunction , Dance Therapy , Dementia , Humans , Aged , Mental Health , Quality of Life , Cognitive Dysfunction/therapy , Cognition
7.
Chin J Integr Med ; 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37861961

ABSTRACT

OBJECTIVE: To investigate the anti-liver cancer effects and aspartic acid (Asp)-related action mechanism of Euphorbia fischeriana Steud. (Lang Du, LD). METHODS: The mice model of liver cancer was established by injection of H22 cells. After 5 days, mice were randomly divided into model group, sorafenib group (20 mg/kg), LD high-dose (LDH, 1.36 g/kg) group, LD medium-dose (LDM, 0.68 g/kg) group, and LD low-dose (LDL, 0.34 g/kg) group, 10 mice each group. Drugs were intragastrically administered to the mice once daily for 10 days, respectively. Body weight, tumor size and tumor weight were recorded. Hepatic index was calculated. Pathological changes of liver cancer tissues were evaluated by hematoxylin and eosin staining and TUNEL staining. Liquid chromatography-mass spectrometer was used to analyze different metabolites between the model and LDH groups. RESULTS: After LD treatment, tumor weight, tumor size and hepatic index were reduced compared with the model group. Necrocytosis and karyorrhexis of tumor cells were found. Moreover, 61 differential metabolites (18 up-regulated, 43 down-regulated) were affirmed and 20 pathways of KEGG (P<0.05) were gotten. In addition, Bel-7402, HepG2 and H22 cell viabilities were significantly increased after adding Asp into the medium. And then, the cell proliferation effect induced by Asp was ameliorated by LD. CONCLUSION: The anti-liver cancer efficacy of LD extract was validated in H22 mice model, and inhibition of Asp level might be the underlying mechanism.

8.
Plant Dis ; 107(9): 2830-2834, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37707825

ABSTRACT

Tea leaf spot caused by Didymella bellidis can seriously reduce the productivity and quality of tea (Camellia sinensis var. sinensis) leaves in Guizhou Province, southwest China. Analysis of the relationship between messenger RNAs (mRNAs) and long non-coding RNAs (lncRNAs) of tea could provide insights into the plant-pathogen interaction. In this study, high-throughput sequencing of mRNAs and lncRNAs from tea leaves during infection by D. bellidis was conducted using the Illumina Novaseq 6000 platform. Infection by D. bellidis hyphae resulted in up- or downregulation of 553 and 191 of the differentially expressed mRNAs (DEmRNAs), respectively. As the S gene number (total number of genes with significantly differential expression annotated in the specified Gene Ontology [GO] database), three were enriched with respect to the defense response to the fungus at the biological process level. Expression of the DEmRNAs peroxidase 21 (TEA000222.1) and mcht-2 (TEA013240.1) originating from tea leaves were upregulated during challenge by D. bellidis hyphae, whereas expression of the LRR receptor-like serine/threonine-protein kinase ERECTA (TEA016781.1) gene was downregulated. The infection of D. bellidis hyphae resulted in up- or downregulation of 227 and 958 of the differentially expressed lncRNAs (DElncRNAs). The DEmRNAs associated with uncharacterized LOC101499401 (TEA015626.1), uncharacterized protein (TEA014125.1), structural maintenance of chromosomes protein 1 (TEA001660.1), and uncharacterized protein (TEA017727.1) occurred as a result of cis regulation by DElncRNAs MSTRG.20036, MSTRG.3843, MSTRG.26132, and MSTRG.56701, respectively. The expression profiling and lncRNA/mRNA association prediction in the tea leaves infected by D. bellidis will provide a valuable resource for further research into disease resistance.


Subject(s)
RNA, Long Noncoding , RNA, Long Noncoding/genetics , Gene Expression Profiling/methods , RNA, Messenger/genetics , Tea
9.
Phytochemistry ; 216: 113863, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37751824

ABSTRACT

Seven undescribed terpenoids, comprising two guaiane-type sesquiterpene lactones (1-2), one eucalyptol-type sesquiterpene (3), one monolactone (4), and three triterpenoids (5-7), along with 35 known analogues, were isolated from the leaves of Artemisia vulgaris L. Their structures and configurations were analysed by extensive spectroscopy. Compounds 1, 2, 8-10, 13, 17, 19, and 28 showed antineuroinflammatory activity, and compounds 1 and 2 revealed remarkable antineuroinflammatory effects, with an IC50 value of 2.2 ± 0.1 and 1.6 ± 0.1 µM, more potent than the positive control drug dexamethasone. Furthermore, compounds 1 and 2 could inhibit the expression of BV-2 inflammatory genes (IL-6, TNF-α, IL-1ß) induced by LPS, downregulate the critical inflammatory protein production of iNOS and COX-2. The anti-HSV-1 activity screening revealed that compounds 28, 29 and 38 exhibited inhibitory activity against HSV-1 proliferation. Particularly, compound 28 exhibited a significant anti-HSV-1 effect, inhibiting the proliferation of HSV-1 and acyclovir-resistant strains of HSV-1/153 and HSV-1/Blue. Our research identified compounds 1, 2, and 28 from A. vulgaris., which could potentially serve as lead compounds for antineuroinflammatory and anti-HSV-1 activities.


Subject(s)
Artemisia , Sesquiterpenes , Artemisia/chemistry , Terpenes/pharmacology , Chromatography, Liquid , Tandem Mass Spectrometry , Sesquiterpenes/chemistry , Molecular Structure
10.
Environ Sci Pollut Res Int ; 30(36): 86425-86436, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37405603

ABSTRACT

A biological aluminum-based P-inactivation agent (BA-PIA) has been developed and demonstrated to effectively remove nitrogen and phosphorus; however, whether it can control the release of nitrogen and phosphorus in sediment still needs study. This study aimed to examine the effect of BA-PIA on controlling sediment nitrogen and phosphorus release. BA-PIA was prepared by artificial aeration. The use of BA-PIA in controlling nitrogen and phosphorus release was studied using water and sediment from a landscape lake in static simulation experiments. The sediment microbial community was analyzed using high-throughput sequencing. Static simulation showed that the reduction rates of total nitrogen (TN) and total phosphorus (TP) by BA-PIA were 66.8 ± 1.46% and 96.0 ± 0.98%, respectively. In addition, capping of BA-PIA promotes the conversion of easily released nitrogen (free nitrogen) in the sediment to stable nitrogen (acid-hydrolyzable nitrogen). The content of weakly adsorbed phosphorus and iron-adsorbed phosphorus in the sediment was reduced. The relative abundance of nitrifying bacteria, denitrifying bacteria, and microorganisms carrying phosphatase genes (such as Actinobacteria) in the sediment increased by 109.78%. The capping of BA-PIA not only effectively removed the nitrogen and phosphorus in water but greatly reduced the risk of nitrogen and phosphorus release from sediment. BA-PIA was able to make up for the deficiency of the aluminum-based phosphorus-locking agent (Al-PIA) that only removes phosphorus, giving it improved application prospects.


Subject(s)
Aluminum , Water Pollutants, Chemical , Phosphorus , Nitrogen/analysis , Biological Factors , Geologic Sediments , Water Pollutants, Chemical/analysis , Lakes , Water
11.
Semin Cancer Biol ; 88: 96-105, 2023 01.
Article in English | MEDLINE | ID: mdl-36470543

ABSTRACT

Small cell lung cancer (SCLC) is characterized by a high mortality rate, rapid growth, and early metastasis, which lead to a poor prognosis. Moreover, limited clinical treatment options further lower the survival rate of patients. Therefore, novel technology and agents are urgently required to enhance clinical efficacy. In this review, from a holistic perspective, we summarized the therapeutic targets, agents and strategies with the most potential for treating SCLC, including chimeric antigen receptor (CAR) T therapy, immunomodulating antibodies, traditional Chinese medicines (TCMs), and the microbiota, which have been found recently to improve the clinical outcomes and prognosis of SCLC. Multiomics technologies can be integrated to develop effective diagnostic methods and identify new targets for new drug discovery in SCLC. We discussed in depth the feasibility, potential, and challenges of these new strategies, as well as their combinational treatments, which may provide promising alternatives for enhancing the clinical efficacy of SCLC in the future.


Subject(s)
Lung Neoplasms , Small Cell Lung Carcinoma , Humans , Small Cell Lung Carcinoma/drug therapy , Small Cell Lung Carcinoma/pathology , Lung Neoplasms/drug therapy , Immunotherapy , Immunomodulation , Prognosis
12.
Eur J Pharm Sci ; 180: 106334, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36402309

ABSTRACT

OBJECTIVE: There is a paucity of published data to evaluate the efficacy and safety of imipenem, cefepime and piperacillin/tazobactam dosing regimens against bloodstream infections caused by Klebsiella aerogenes (BSIs-Kae) and Enterobacter cloacae complex (BSIs-Ecc) in patients with various degrees of renal function. METHODS: Pathogens were isolated from China's blood bacterial resistant investigation network. The dosing regimens of imipenem, cefepime and piperacillin were simulated with intermittent infusion and extended infusion. Monte Carlo simulation was performed to calculate the probability of target attainment and a cumulative fraction of response (CFR) against BSIs-Kae/Ecc. RESULTS: In total, 203 BSIs-Kae, and 785 BSIs-Ecc were isolated from the surveillance network. Imipenem showed the highest in vitro activity against BSIs-Kae/Ecc, followed by cefepime (85%) and piperacillin/tazobactam (70-80%). The MIC90 values of imipenem, cefepime and piperacillin/tazobactam aginst BSIs-Kae and BSIs-Ecc were 1/1 mg/L, 16/16 mg/L, and 64/128 mg/L, respectively. The simulation results showed imipenem achieved the highest CFRs in patients with normal or decreased renal function, with values of 91-99%, followed by FEP (88-96%), without risk of excessive dosing. However, the intermittent and extended dosing regimens of piperacillin/tazobactam were unlikely to provide adequate exposure for empirical management of BSIs-Kae/Ecc (CFRs, 50-80%), regardless of renal function. Besides, the traditional intermittent piperacillin/tazobactam dosing regimens were highly likely to contribute to suboptimal therapeutic exposure when MIC was close to clinical breakpoints. CONCLUSIONS: Cefepime, not piperacillin/tazobactam, can be a reasonable carbapenem-sparing option in empirically treating BSIs-Kae/Ecc.


Subject(s)
Enterobacter , Sepsis , Humans , Cefepime , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Microbial Sensitivity Tests , Piperacillin, Tazobactam Drug Combination , Imipenem/pharmacology , Monte Carlo Method
13.
Front Physiol ; 13: 1039804, 2022.
Article in English | MEDLINE | ID: mdl-36505059

ABSTRACT

Objective: To investigate the effect of Massa Medicata Fermentata (MMF) on the changes of pathogenic flagellar bacteria and visceral hypersensitivity in rats with diarrhea irritable bowel syndrome (IBS-D). Methods: Thirty adult SD rats were randomly divided into normal control group (n = 10), model control group (n = 10), and MMF group (n = 10). Acetic acid enema combined with restraint stress was used to build the IBS-D visceral hypersensitivity model; Abdominal withdrawal reflex (AWR) test was used to assess the visceral sensitivity of rats; 16SrRNA sequencing was used to analyze the changes of intestinal bacteria in each group, and the content of pathogenic flagellated bacteria were quantitatively counted; The content of flagellin in colonic mucosa was detected by ELISA; TLR5 protein in colonic mucosa of rats was detected by Western Blot. Results: After IBS-D modeling, the visceral sensitivity of rats was significantly higher in the model control group than that in the normal control group (p = 0.0061), while it was significantly decreased in MMF group compared with the model control group (p = 0.0217), but without significant difference compared with the normal control group (p = 0.6851). The number of fecal Bifidobacterium and Lactobacillus in the model group were significantly decreased compared with the normal control group (p < 0.0001); While they were significantly increased in the MMF group compared with the model control group and normal control group (p = 0.009; p < 0.0001). The amount of fecal pathogenic flagellated bacteria in the model group was significantly increased compared with the normal control group (p = 0.001); However it was significantly reduced in MMF group compared with the model group (p = 0.026), which has no statistically difference with the normal control group (p = 0.6486). The content of flagellin in colonic mucosa was significantly increased in the model group when compared with the normal control group (p < 0.0001), and it was decreased in MMF group compared with the normal control group (p < 0.0001), but there was no statistical difference with the normal control group (p = 0.6545). The expression level of TLR5 protein in colonic mucosa of rat was significantly increased in model control group compared with the normal control group (p = 0.0034), However, it was significantly decreased in MMF group compared with normal control group (p = 0.0019), but it was no statistical difference with the normal control group (p = 0.7519). Conclusion: MMF can reduce visceral hypersensitivity by decreasing the content of pathogenic flagellated bacteria and their flagellin and inhibiting its specific receptor TLR5 protein expression in colonic mucosa in IBS-D rats.

14.
Int J Chron Obstruct Pulmon Dis ; 17: 2589-2602, 2022.
Article in English | MEDLINE | ID: mdl-36267325

ABSTRACT

Background: It has been reported that a disintegrin and metalloproteinase 9 (ADAM9) is involved in the pathogenesis of cigarette smoke (CS)-associated chronic obstructive pulmonary disease (COPD). But how CS exposure leads to upregulation of ADAM9 remains unknown. Methods: Patients who underwent lobectomy for a solitary pulmonary nodule were enrolled and divided into three groups: non-smokers with normal lung function, smokers without COPD and smoker patients with COPD. Immunoreactivity of interleukin (IL)-17A and ADAM9 in small airways and alveolar walls was measured by immunohistochemistry. Wild-type and Il17a -/- C57BL/6 mice were exposed to CS for six months, and ADAM9 expression in the airway epithelia was measured by immunoreactivity. In addition, the protein and mRNA expression levels of IL-17A and ADAM9 were assessed in CS extract (CSE) and/or IL-17A-treated human bronchial epithelial (HBE) cells. Results: The immunoreactivity of ADAM9 was increased in the airway epithelia and alveolar walls of patients with COPD compared to that of the controls. The expression of IL-17A was also upregulated in airway epithelial cells of patients with COPD and correlated positively with the level of ADAM9. The results from the animal model showed that Il17a -/- mice were protected from emphysema induced by CS exposure, together with a reduced level of ADAM9 expression in the airway epithelia, suggesting a possible link between ADAM9 and IL-17A. Consistently, our in vitro cell model showed that CSE stimulated the expression of ADAM9 and IL-17A in HBE cells in a dose- and time-dependent manner. Recombinant IL-17A induced ADAM9 upregulation in HBE cells and had a synergistic effect with CSE, whereas blocking IL-17A inhibited CSE-induced ADAM9 expression. Further analysis revealed that IL-17A induced c-Jun N-terminal kinase (JNK) phosphorylation, thereby increasing ADAM9 expression. Conclusion: Our results revealed a novel role of IL-17A in CS-related COPD, where IL-17A contributes to ADAM9 expression by activating JNK signaling.


Subject(s)
Cigarette Smoking , Pulmonary Disease, Chronic Obstructive , Humans , Mice , Animals , Pulmonary Disease, Chronic Obstructive/genetics , Pulmonary Disease, Chronic Obstructive/metabolism , Interleukin-17/genetics , Disintegrins/metabolism , Cigarette Smoking/adverse effects , Mice, Inbred C57BL , Nicotiana , Epithelial Cells/metabolism , RNA, Messenger/genetics , JNK Mitogen-Activated Protein Kinases/metabolism , Plant Extracts , Membrane Proteins/genetics , Membrane Proteins/metabolism , ADAM Proteins/genetics , ADAM Proteins/metabolism
15.
Am J Chin Med ; 50(7): 1905-1925, 2022.
Article in English | MEDLINE | ID: mdl-36185014

ABSTRACT

Patchouli alcohol (PA) has been widely used for the treatment of diarrhea-predominant irritable bowel syndrome (IBS-D) in traditional Chinese medicine, and the related mechanism remains to be fully understood. Our previous study has indicated that PA significantly reduced visceral sensitivity and defecation area in IBS-D rats. In this study, we prepared an IBS-D rat model and observed the dynamic intestinal motility and colonic longitudinal muscle and myenteric plexus (LMMP) neurons, as well as their subtypes at D14, D21, and D28. After PA administration, we observed the effects on the changes in intestinal motility, colonic LMMP neurons, and LMMP Myosin Va in IBS-D rats and their co-localization with inhibitory neurotransmitter-related proteins. The results indicated that PA treatment could alleviate IBS-D symptoms, regulate the abnormal expression of LMMP neurons, increase Myosin Va expression, up-regulate co-localization levels of Myosin Va with neuronal nitric oxide synthase (nNOS), and promote co-localization levels of Myosin Va with vasoactive intestinal polypeptide (VIP). In conclusion, this study demonstrated the neuropathic alterations in the colon of chronic restraint stress-induced IBS-D rat model. PA reversed the neuropathological alteration by affecting the transport process of nNOS and VIP vesicles via Myosin Va and the function of LMMP inhibitory neurons, and these effects were related to the mechanism of enteric nervous system (ENS) remodeling.


Subject(s)
Irritable Bowel Syndrome , Rats , Animals , Irritable Bowel Syndrome/drug therapy , Disease Models, Animal , Diarrhea/drug therapy , Diarrhea/etiology , Diarrhea/metabolism , Neurons/metabolism , Adaptation, Physiological , Myosins
18.
J Tradit Chin Med ; 42(4): 633-6400, 2022 08.
Article in English | MEDLINE | ID: mdl-35848981

ABSTRACT

OBJECTIVE: To explore the factors influencing physicians' intentions to use Traditional Chinese Medicine (TCM) to treat coronavirus disease 2019 (COVID-19). METHODS: A cross-sectional, self-report online survey was conducted from March 16, 2020, to April 2, 2020, in China. Participants were recruited through convenience and snowball sampling. Data were collected by using a self-designed questionnaire based on the Theory of Planned Behavior. Structural equation modeling was used for data analysis. RESULTS: A total of 494 physicians were enrolled in this study. Overall, the model explained 75.4% and 75.5% of the total variance in intention and attitude, respectively. Specifically, attitudes (ß = 0.467, P < 0.001), past behavior (ß = 0.384, P < 0.05), subjective norms (SN) (ß = 0.177, P < 0.001), and perceived behavioral control (PBC) (ß = 0.133, P < 0.05) significantly affected physicians' intention to use TCM. Cognition (ß = 0.606, P < 0.001) and PBC (ß = 0.569, P < 0.01) significantly influenced physicians' attitudes toward using TCM. SN (ß = 0.064, P = 0.263) was not a factor affecting attitude. CONCLUSION: Physicians' intention to use TCM was significantly associated with attitude, past behavior, PBC, and SN. The findings may not only be useful for understanding the influencing factors and paths of physicians' intention to use TCM to treat COVID-19 but also provide a reference for health authorities and policymakers to promote physicians to utilize TCM.


Subject(s)
COVID-19 Drug Treatment , Physicians , Cross-Sectional Studies , Humans , Intention , Medicine, Chinese Traditional , Surveys and Questionnaires
19.
Chin J Nat Med ; 20(5): 393-400, 2022 May.
Article in English | MEDLINE | ID: mdl-35551774

ABSTRACT

Andrographis Herba, the aerial part of Andrographis paniculata (Burm. f.) Wall. ex Nees (Acanthaceae), has a wide geographic distribution and has been used for the treatment of fever, cold, inflammation, and other infectious diseases. In markets, sellers and buyers commonly inadvertently confuse with related species. In addition, most Chinese medicinal herbs are subjected to traditional processing procedures, such as steaming and boiling, before they are sold at dispensaries; therefore, it is very difficult to identify Andrographis Herba when it is processed into Chinese medicines. The identification of species and processed medicinal materials is a growing issue in the marketplace. However, conventional methods of identification have limitations, while DNA barcoding has received considerable attention as a new potential means to identify species and processed medicinal materials. In this study, 17 standard reference materials of A. paniculata, 2 standard decoctions, 27 commercial products and two adulterants were collected. Based on the ITS2 sequence, it could successfully identify A. paniculata and adulterants. Moreover, a nucleotide signature consisting of 71 bp was designed, this sequence is highly conserved and specific within A. paniculata while divergent among other species. Then, we used these new primers to amplify the nucleotide signature region from processed materials. In conclusion, the DNA barcoding method developed in the present study for authenticating A. paniculata is rapid and cost-effective. It can be used in the future to guarantee the quality of Andrographis Herba of each regulatory link for clinical use.


Subject(s)
Andrographis , Drugs, Chinese Herbal , Andrographis paniculata , DNA Primers
20.
Mol Immunol ; 145: 59-66, 2022 05.
Article in English | MEDLINE | ID: mdl-35298938

ABSTRACT

BACKGROUND: Mugwort, timothy, and birch are commonly spread pollen allergens across China. Although several studies have described the rates of sensitization to mugwort, timothy, and birch in China, most of them just on specific whole-allergen extracts but little was known about the co-sensitization characteristics of its allergen components. This study aimed to explore the patterns of sensitization to mugwort, timothy, birch, and their major allergen components. METHOD: Serum specific IgE (sIgE) levels of allergen components of mugwort, timothy, birch, and cross-reactive carbohydrate determinants (CCD) were detected in 160 patients whose serum showed positive results to at least one of mugwort, timothy, and birch allergens via EUROBlotMaster system. Skin prick testing was utilized to assess the allergic reaction of grass, weed, and tree allergens. Latent class analysis was used to identify underlying patterns of sensitization to a series of allergen components and their corresponding extracts. RESULTS: 88.8% of patients with allergic rhinitis and/or asthma were positive for mugwort-sIgE, 30% for timothy-sIgE, and 32.5% for birch-sIgE. By using the LCA model, three sensitization patterns as "Mugwort, Art v 4, Bet v 2 and Phl p 12 co-sensitized", "Timothy, mugwort, and CCD co-sensitized", "Mugwort and Art v 1 co-sensitized" were revealed based on optimal statistical fit in this study. Compared with other clusters, participants in "Mugwort, Art v 4, Bet v 2 and Phl p 12 co-sensitized" pattern were associated with higher sensitization rates of common grass and tree pollens allergen. The spearman's coefficient between CCD and timothy was larger than the corresponding values of CCD with mugwort or birch. CONCLUSION: CCD and profilin, as minor allergens in pollens, were associated with other pollen sIgE false positives presumably due to cross-reactivity. Patients sensitized with profilin had a significantly higher risk of sensitization to other pollens.


Subject(s)
Artemisia , Betula , Allergens , Cross Reactions , Humans , Latent Class Analysis , Phleum , Plant Extracts , Poaceae , Profilins
SELECTION OF CITATIONS
SEARCH DETAIL