Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Phytochem Anal ; 35(5): 1112-1122, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38500381

ABSTRACT

INTRODUCTION: Polygonum amplexicaule D. Don var. sinense Forb (PAF), a medicinal plant, has the effect of promoting blood circulation and removing blood stasis. However, the active compounds and targets of its anticoagulant effect are still unclear. OBJECTIVES: This study aims to establish an effective reversely thrombin-targeted screening method for anticoagulant active components in PAF by affinity ultrafiltration (AUF) coupled with ultrahigh-performance liquid chromatography-quadrupole time-of-flight mass spectroscopy (UPLC-Q-TOF-MS). METHODS: Different polar parts of PAF were screened for potential thrombin ligands by AUF-HPLC and identified by UPLC-Q-TOF-MS. After studying the affinity between ligands and thrombin by molecular docking, the antithrombotic activity of ligands was detected in vivo by zebrafish thrombus model, and in vitro by chromogenic substrate method. The mechanism of such ligands on thrombin was further studied by coagulation factor assay. RESULTS: Eleven potential thrombin ligands from PAF were screened by the AUF-UPLC-Q-TOF-MS method, and two compounds (butyl gallate and ß-sitosterol) with significant anticoagulant activity were discovered via in vitro and in vivo activity testing. CONCLUSION: A method system based on AUF-UPLC-Q-TOF-MS, molecular docking and in vivo and in vitro experiments also provided a powerful tool for further exploration of anticoagulant active components in PAF.


Subject(s)
Anticoagulants , Molecular Docking Simulation , Polygonum , Thrombin , Ultrafiltration , Zebrafish , Polygonum/chemistry , Chromatography, High Pressure Liquid/methods , Anticoagulants/pharmacology , Anticoagulants/chemistry , Ultrafiltration/methods , Animals , Thrombin/metabolism , Mass Spectrometry/methods , Ligands
2.
Phytochem Anal ; 34(4): 443-452, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37038738

ABSTRACT

INTRODUCTION: Ligusticum chuanxiong ('chuanxiong') is a traditional Chinese medicine for promoting blood circulation and removing blood stasis, which is often used to treat thrombotic diseases. However, its potential anticoagulant active ingredients have been unexplored. OBJECTIVES: The study aims to establish an affinity ultrafiltration mass spectrometry (AUF-MS) method for rapid screening of anti-thrombin active components of chuanxiong and to verify it in vitro. METHOD: In this study, the chemical constituents of different parts of chuanxiong were determined. A method for rapid screening of anticoagulant active ingredients by AUF-MS was established using thrombin as an affinity receptor target. Subsequently, the anticoagulant effect of such ligands was verified by in vitro anticoagulation experiments such as chromogenic substrate method and in vitro coagulation assay. Then the possible interaction mechanism between these ligands and thrombin was further studied by molecular docking. RESULTS: Twenty-one components were detected from different parts of chuanxiong. And three potential anti-thrombin active components were screened: ferulic acid, chlorogenic acid, isochlorogenic acid A by AUF coupled with high-performance liquid chromatography-quadrupole-Orbitrap mass spectrometry (HPLC-Q-Orbitrap-MSn ). The in vitro activity experiments and molecular docking revealed that these potential ligands exhibited strong binding ability and inhibitory activities on thrombin. CONCLUSION: The present study revealed that chuanxiong is a traditional Chinese medicine with excellent anticoagulation effects. Meanwhile, the integrated strategy based on AUF-MS, in vitro experiments and molecular docking also provided a powerful tool for further exploration of active ingredients responsible for the anticoagulant activity in chuanxiong.


Subject(s)
Drugs, Chinese Herbal , Ligusticum , Chromatography, High Pressure Liquid/methods , Ligusticum/chemistry , Molecular Docking Simulation , Ultrafiltration , Thrombin , Anticoagulants/pharmacology , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL