Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Front Pharmacol ; 13: 872474, 2022.
Article in English | MEDLINE | ID: mdl-35873571

ABSTRACT

The nephrotoxicity of Fructus Psoraleae, an effective traditional Chinese medicine for vitiligo treatment, has been reported. As one of the main toxic components in Fructus Psoraleae, bavachin (BV) was considered to be related to Fructus Psoraleae-caused adverse outcomes, but the direct evidence and molecular mechanism underlying BV-induced nephrotoxicity are not well elucidated. Therefore, this study was designed to confirm whether BV would cause toxic effects on the kidney and explore the possible mode of action. Our results demonstrated that days' treatment with 0.5 µM BV indeed caused obvious renal fibrosis in the zebrafish kidney. The obvious E- to N-cadherin switch and the expressions of proteins promoting epithelial-mesenchymal transition (EMT) were observed in BV-treated human renal tubular epithelial and zebrafish kidneys. In addition, elevated reactive oxygen species (ROS) levels and Bip/eIF2α/CHOP-mediated endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) were caused by BV, both of which could be reversed by ROS scavenger N-acetyl-L-cysteine (NAC). Also, blocking ER stress-caused cytoplasmic Ca2+ overload with 4-PBA notably alleviated BV-induced alterations in key molecular events related to EMT and renal fibrosis. Furthermore, of the natural compounds subjected to screening, ginsenoside Rb1 significantly downregulated BV-induced ER stress by inhibiting ROS generation and following the activation of Bip/eIF2α/CHOP signaling in HK2 cells. Subsequently, BV-triggered EMT and renal fibrosis were both ameliorated by ginsenoside Rb1. In summary, our findings suggested that BV-induced ROS promoted the appearance of EMT and renal fibrosis mainly via Bip/eIF2α/CHOP-mediated ER stress. This ER stress-related toxic pathway might be a potential intervention target for BV-caused renal fibrosis, and ginsenoside Rb1 would be a promising drug against BV- or Fructus Psoraleae-induced nephrotoxicity.

2.
Oxid Med Cell Longev ; 2021: 8865813, 2021.
Article in English | MEDLINE | ID: mdl-33968299

ABSTRACT

Cassiae Semen is a widely used herbal medicine and a popular edible variety in many dietary or health beverage. Emerging evidence disclosed that improper administration of Cassiae Semen could induce obvious liver injury, which is possibly attributed to emodin, one of the bioactive anthraquinone compounds in Cassiae Semen, which caused hepatotoxicity, but the underlying mechanisms are not completely understood. Hence, the present study firstly explored the possible role of oxidative stress-mediated mitochondrial dysfunction and ER stress in emodin-cause apoptosis of L02 cells, aiming to elaborate possible toxic mechanisms involved in emodin-induced hepatotoxicity. Our results showed that emodin-induced ROS activated ER stress and the UPR via the BiP/IRE1α/CHOP signaling pathway, followed by ER Ca2+ release and cytoplasmic Ca2+ overloading. At the same time, emodin-caused redox imbalance increased mtROS while decreased MMP and mitochondrial function, resulting in the leaks of mitochondrial-related proapoptotic factors. Interestingly, blocking Ca2+ release from ER by 2-APB could inhibit emodin-induced apoptosis of L02, but the restored mitochondrial function did not reduce the apoptosis rates of emodin-treated cells. Besides, tunicamycin (TM) and doxorubicin (DOX) were used to activate ER stress and mitochondrial injury at a dosage where obvious apoptosis was not observed, respectively. We found that cotreatment with TM and DOX significantly induced apoptosis of L02 cells. Thus, all the results indicated that emodin-induced excessive ROS generation and redox imbalance promoted apoptosis, which was mainly associated with BiP/IRE1α/CHOP signaling-mediated ER stress and would be enhanced by oxidative stress-mediated mitochondrial dysfunction. Altogether, this finding has implicated that redox imbalance-mediated ER stress could be an alternative target for the treatment of Cassiae Semen or other medicine-food homologous varieties containing emodin-induced liver injury.


Subject(s)
Emodin/therapeutic use , Endoplasmic Reticulum Stress/drug effects , Mitochondria/metabolism , Protein Kinase Inhibitors/therapeutic use , Animals , Apoptosis , Cell Line, Tumor , Emodin/pharmacology , Humans , Protein Kinase Inhibitors/pharmacology , Signal Transduction , Smegmamorpha
SELECTION OF CITATIONS
SEARCH DETAIL