Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
Biol Reprod ; 109(3): 299-308, 2023 09 12.
Article in English | MEDLINE | ID: mdl-37334936

ABSTRACT

Melatonin is important for oocyte maturation, fertilization, early embryonic development, and embryo implantation, but less knowledge is available regarding its role in decidualization. The present study found that melatonin did not alter the proliferation of human endometrial stromal cells (ESCs), as well as cell cycle progress, but suppressed stromal differentiation after binding to the melatonin receptor 1B (MTNR1B), which was visualized in decidualizing ESCs. Further analysis evidenced that application of melatonin resulted in the diminishment for NOTCH1 and RBPJ expression. Supplementation of recombinant NOTCH1 protein (rNOTCH1) counteracted the impairment of stromal differentiation conferred by melatonin, while the addition of the NOTCH signaling pathway inhibitor DAPT aggravated the differentiation progress. Meanwhile, melatonin might restrain the expression and transcriptional activity of nuclear factor erythroid 2-related factor 2 (NRF2), whose blockage accelerated the fault of stromal differentiation under the context of melatonin, but this restraint was subsequently ameliorated by rNOTCH1. Forkhead box O 1 (FOXO1) was identified as a downstream target of melatonin in decidualization. Repression of NRF2 antagonized the retrieval of rNOTCH1 due to aberrant FOXO1 expression elicited by melatonin. Moreover, melatonin brought about the occurrence of oxidative stress accompanied by an obvious accumulation of intracellular reactive oxygen species and a significant reduction in glutathione (GSH) content, as well as enzymatic activities of glutathione peroxidase and glutathione reductase, whereas supplementation of rNOTCH1 improved the above-mentioned effects. Nevertheless, this improvement was disrupted by the blockage of NRF2 and FOXO1. Furthermore, addition of GSH rescued the defect of stromal differentiation by melatonin. Collectively, melatonin might impair endometrial decidualization by restraining the differentiation of ESCs dependent on NOTCH1-NRF2-FOXO1-GSH pathway after binding to the MTNR1B receptor.


Subject(s)
Decidua , Melatonin , Female , Humans , Pregnancy , Decidua/metabolism , Endometrium/metabolism , Forkhead Box Protein O1/metabolism , Glutathione/metabolism , Melatonin/pharmacology , Melatonin/metabolism , NF-E2-Related Factor 2/metabolism , Receptor, Notch1/genetics , Receptor, Notch1/metabolism , Stromal Cells/metabolism
2.
Phytomedicine ; 95: 153874, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34923232

ABSTRACT

BACKGROUND: Although severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and human coronavirus 229E (HCoV-229E) pose a huge threat to human public health, no specific treatment is available. Jinzhen granule (JZ) is a traditional eight ingredients-Chinese medicine with prominent efficacy for treating viral-induced diseases. However, little is known about the antiviral effect and mechanism of JZ against SARS-CoV-2 and HCoV-229E. PURPOSE: This study aimed to reveal the antiviral effects of JZ against SARS-CoV-2 and HCoV-229E, and to further explore the underlying mechanisms regulating the host immune response. METHODS: The chromatographic separation of JZ was performed using a Shimadzu analytical high-performance liquid chromatograph with UV detection and Alltech ELSD 2000ES. We conducted cytopathic effect (CPE) and plaque reduction assays to evaluate the antiviral effect of JZ. A lethal human angiotensin converting enzyme 2 (hACE2) transgenic mouse model of SARS-CoV-2 was established to determine the protective effect of JZ on mortality and lung virus titers. Real-time quantitative PCR assays were used to analyze the expression of proinflammatory cytokines in vitro and in vivo. Western blotting was further performed to determine the activities on regulating the nuclear factor kappa B (NF-κB)/MAPK pathway. Finally, mitochondrial membrane potential assays, flow cytometry analysis and western blotting were used to assess the anti-apoptotic potency toward HCoV-229E infection. RESULTS: The results showed that 13 chemical components were identified and five peaks were determined and quantitated (gallic acid 1.97 mg/g, baicalin 20.69 mg/g, glycyrrhizic acid 4.92 mg/g, hyodeoxycholic acid 4.86 mg/g, cholic acid 4.07 mg/g). We found that JZ exerted inhibitory potency against SARS-CoV-2 and HCoV-229E in vitro by using CPE and plaque reduction assays, and it was further found that JZ protected mice infected by SARS-CoV-2 from death and inhibited lung virus titers. JZ also significantly decreased the induction of inflammatory cytokines (IL-1α, IL-6, CCL-5 and MIP-1ß), similar to the observed in vitro effect. Moreover, JZ suppressed the release of inflammatory cytokines in vitro and it decreased the protein expression of p-p38 MAPK, p-JNK, p-NF-κB p65 and p-IκBα induced by HCoV-229E and increased the expression of IκBα. Notably, JZ significantly protected HCoV-229E-infected Huh-7 cells from mitochondrial damage and decreased apoptotic cells. The activation of the mitochondria-mediated apoptotic pathway was inhibited by JZ, as shown by the reduced expression of cleaved caspase-9, caspase-3 and p-PARP. CONCLUSIONS: In conclusion, JZ (gallic acid 1.97 mg/g, baicalin 20.69 mg/g, glycyrrhizic acid 4.92 mg/g, hyodeoxycholic acid 4.86 mg/g, cholic acid 4.07 mg/g) exhibited antiviral activities against SARS-CoV-2 and HCoV-229E by regulating the NF-κB/MAPK pathway and the mitochondria-mediated apoptotic pathway. These findings demonstrated the efficacy of JZ against CoVs and suggested JZ treatment as a novel clinical therapeutic strategy for COVID-19.


Subject(s)
Antiviral Agents , Coronavirus 229E, Human , Drugs, Chinese Herbal/pharmacology , SARS-CoV-2/drug effects , Animals , Antiviral Agents/pharmacology , COVID-19 , Coronavirus 229E, Human/drug effects , Humans , MAP Kinase Signaling System , Mice , NF-kappa B
3.
Food Funct ; 12(18): 8800-8811, 2021 Sep 20.
Article in English | MEDLINE | ID: mdl-34374402

ABSTRACT

Polycystic ovarian syndrome (PCOS) is a complex endocrinopathy in women of reproductive age and the main cause of female infertility, but there is no universal drug for PCOS therapy. As a predominant dietary isoflavone present in soybeans, genistein (GEN) possesses estrogenic and antioxidative properties, but limited information is available regarding its therapeutic potential and underlying molecular mechanism in PCOS. In this study, we found that GEN might restore the estrous cycle of PCOS mice and ameliorate the elevation of circulating T, AMH and LH levels as well as LH/FSH ratios along with reduced cystic follicles, indicating the importance of GEN in PCOS therapy. Meanwhile, GEN improved the ovarian secretion function of PCOS mice and attenuated oxidative damage of the ovary through enhancing its antioxidant capability dependent on ER. Supplementation of GEN improved the defect of the ATP level and mitochondrial membrane potential, indicating the significance of GEN in preventing mitochondrial dysfunction. Further analysis demonstrated that GEN via ER heightened the expression of Nrf2 and Foxo1 whose blockage antagonized the defence of GEN on the secretory and mitochondrial functions of ovarian granulosa cells followed by the limited antioxidant capability and increased intracellular ROS level. Moreover, nuclear translocation and transcriptional activity of Nrf2 presented a notable enhancement after exposure to GEN. Addition of the Nrf2 inhibitor ML385 hampered the GEN induction of Foxo1. Nrf2 might directly bind to the antioxidant response element of the Foxo1 promoter region. Collectively, GEN might exhibit therapeutic potential for PCOS mice via the ER-Nrf2-Foxo1-ROS pathway.


Subject(s)
Forkhead Box Protein O1/metabolism , Genistein/therapeutic use , NF-E2-Related Factor 2/metabolism , Polycystic Ovary Syndrome/drug therapy , Reactive Oxygen Species/metabolism , Receptors, Estrogen/metabolism , Animals , Antioxidants/metabolism , Dehydroepiandrosterone/pharmacology , Female , Granulosa Cells/drug effects , Granulosa Cells/metabolism , Mice , Mice, Inbred ICR , Mitochondria/drug effects , Mitochondria/metabolism , Ovary/drug effects , Ovary/metabolism , Oxidative Stress , Polycystic Ovary Syndrome/metabolism
4.
Phytomedicine ; 78: 153296, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32890913

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has extensively and rapidly spread in the world, causing an outbreak of acute infectious pneumonia. However, no specific antiviral drugs or vaccines can be used. Phillyrin (KD-1), a representative ingredient of Forsythia suspensa, possesses anti-inflammatory, anti-oxidant, and antiviral activities. However, little is known about the antiviral abilities and mechanism of KD-1 against SARS-CoV-2 and human coronavirus 229E (HCoV-229E). PURPOSE: The study was designed to investigate the antiviral and anti-inflammatory activities of KD-1 against the novel SARS-CoV-2 and HCoV-229E and its potential effect in regulating host immune response in vitro. METHODS: The antiviral activities of KD-1 against SARS-CoV-2 and HCoV-229E were assessed in Vero E6 cells using cytopathic effect and plaque-reduction assay. Proinflammatory cytokine expression levels upon infection with SARS-CoV-2 and HCoV-229E infection in Huh-7 cells were measured by real-time quantitative PCR assays. Western blot assay was used to determine the protein expression of nuclear factor kappa B (NF-κB) p65, p-NF-κB p65, IκBα, and p-IκBα in Huh-7 cells, which are the key targets of the NF-κB pathway. RESULTS: KD-1 could significantly inhibit SARS-CoV-2 and HCoV-229E replication in vitro. KD-1 could also markedly reduce the production of proinflammatory cytokines (TNF-α, IL-6, IL-1ß, MCP-1, and IP-10) at the mRNA levels. Moreover, KD-1 could significantly reduce the protein expression of p-NF-κB p65, NF-κB p65, and p-IκBα, while increasing the expression of IκBα in Huh-7 cells. CONCLUSIONS: KD-1 could significantly inhibit virus proliferation in vitro, the up-regulated expression of proinflammatory cytokines induced by SARS-CoV-2 and HCoV-229E by regulating the activity of the NF-кB signaling pathway. Our findings indicated that KD-1 protected against virus attack and can thus be used as a novel strategy for controlling the coronavirus disease 2019.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Coronavirus 229E, Human/drug effects , Coronavirus Infections , Glucosides/pharmacology , NF-kappa B/metabolism , Pandemics , Pneumonia, Viral , Animals , COVID-19 , Chlorocebus aethiops , Coronavirus/drug effects , Coronavirus Infections/metabolism , Coronavirus Infections/virology , Cytokines/metabolism , Forsythia/chemistry , Humans , Phytotherapy , Plant Extracts/pharmacology , Pneumonia, Viral/metabolism , Pneumonia, Viral/virology , SARS-CoV-2 , Severe Acute Respiratory Syndrome/virology , Signal Transduction/drug effects , Vero Cells , Virus Replication/drug effects
5.
Cell ; 182(3): 734-743.e5, 2020 08 06.
Article in English | MEDLINE | ID: mdl-32643603

ABSTRACT

COVID-19, caused by SARS-CoV-2, is a virulent pneumonia, with >4,000,000 confirmed cases worldwide and >290,000 deaths as of May 15, 2020. It is critical that vaccines and therapeutics be developed very rapidly. Mice, the ideal animal for assessing such interventions, are resistant to SARS-CoV-2. Here, we overcome this difficulty by exogenous delivery of human ACE2 with a replication-deficient adenovirus (Ad5-hACE2). Ad5-hACE2-sensitized mice developed pneumonia characterized by weight loss, severe pulmonary pathology, and high-titer virus replication in lungs. Type I interferon, T cells, and, most importantly, signal transducer and activator of transcription 1 (STAT1) are critical for virus clearance and disease resolution in these mice. Ad5-hACE2-transduced mice enabled rapid assessments of a vaccine candidate, of human convalescent plasma, and of two antiviral therapies (poly I:C and remdesivir). In summary, we describe a murine model of broad and immediate utility to investigate COVID-19 pathogenesis and to evaluate new therapies and vaccines.


Subject(s)
Betacoronavirus/immunology , Coronavirus Infections/pathology , Coronavirus Infections/prevention & control , Disease Models, Animal , Pandemics/prevention & control , Pneumonia, Viral/pathology , Pneumonia, Viral/prevention & control , Vaccination , Angiotensin-Converting Enzyme 2 , Animals , COVID-19 , Chlorocebus aethiops , Coronavirus Infections/virology , Drug Evaluation, Preclinical/methods , Female , Humans , Interferon-gamma/genetics , Interferon-gamma/metabolism , Lung/pathology , Lung/virology , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/virology , Receptor, Interferon alpha-beta/genetics , Receptor, Interferon alpha-beta/metabolism , SARS-CoV-2 , STAT1 Transcription Factor/genetics , STAT1 Transcription Factor/metabolism , Specific Pathogen-Free Organisms , Transduction, Genetic , Vero Cells , Viral Load , Virus Replication
6.
Pharmacol Res ; 158: 104850, 2020 08.
Article in English | MEDLINE | ID: mdl-32360580

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has spread worldwide through person-to-person contact, causing a public health emergency of international concern. At present, there is no specific antiviral treatment recommended for SARS-CoV-2 infection. Liu Shen capsule (LS), a traditional Chinese medicine, has been proven to have a wide spectrum of pharmacological properties, such as anti-inflammatory, antiviral and immunomodulatory activities. However, little is known about the antiviral effect of LS against SARS-CoV-2. Herein, the study was designed to investigate the antiviral activity of SARS-CoV-2 and its potential effect in regulating the host's immune response. The inhibitory effect of LS against SARS-CoV-2 replication in Vero E6 cells was evaluated by using the cytopathic effect (CPE) and plaque reduction assay. The number of virions of SARS-CoV-2 was observed under transmission electron microscope after treatment with LS. Proinflammatory cytokine expression levels upon SARS-CoV-2 infection in Huh-7 cells were measured by real-time quantitative PCR assays. The results showed that LS could significantly inhibit SARS-CoV-2 replication in Vero E6 cells, and reduce the number of virus particles and it could markedly reduce pro-inflammatory cytokines (TNF-α, IL-6, IL-1ß, IL-8, CCL-2/MCP-1 and CXCL-10/IP-10) production at the mRNA levels. Moreover, the expression of the key proteins in the NF-κB/MAPK signaling pathway was detected by western blot and it was found that LS could inhibit the expression of p-NF-κB p65, p-IκBα and p-p38 MAPK, while increasing the expression of IκBα. These findings indicate that LS could inhibit SARS-CoV-2 virus infection via downregulating the expression of inflammatory cytokines induced virus and regulating the activity of NF-κB/MAPK signaling pathway in vitro, making its promising candidate treatment for controlling COVID-19 disease.


Subject(s)
Betacoronavirus/drug effects , Complex Mixtures/pharmacology , NF-kappa B/antagonists & inhibitors , NF-kappa B/metabolism , Signal Transduction/drug effects , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Alanine/analogs & derivatives , Alanine/pharmacology , Animals , Anti-Inflammatory Agents/pharmacology , Antiviral Agents/pharmacology , COVID-19 , Cell Proliferation/drug effects , Cells, Cultured , Chlorocebus aethiops , Coronavirus Infections/virology , Humans , Inflammation Mediators/metabolism , Pandemics , Pneumonia, Viral/virology , SARS-CoV-2 , Virion/drug effects
7.
Cell Biol Int ; 44(2): 433-445, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31579960

ABSTRACT

Genistein is an isoflavone that has estrogen (E2 )-like activity and is beneficial for follicular development, but little is known regarding its function in oxidative stress (OS)-mediated granulosa cell (GC) injury. Here, we found that after exposure to H2 O2 , Genistein weakened the elevated levels of intracellular reactive oxygen species (ROS) and malondialdehyde (MDA), which were regarded as the biomarkers for OS, and rescued glutathione (GSH) content and GSH/GSSG ratio accompanying with a simultaneous increase in cyclic adenosine monophosphate (cAMP) level, whereas addition of protein kinase A (PKA) inhibitor H89 impeded the effects of Genistein on the levels of ROS and MDA. Further analysis evidenced that Genistein enhanced the activities of antioxidant enzymes superoxide dismutase (SOD), GSH-peroxidase (GSH-Px), and catalase (CAT) in H2 O2 -treated GCs, but this enhancement was attenuated by H89. Under OS, Genistein improved cell viability and lessened the apoptotic rate of GCs along with a reduction in the activity of Casp3 and levels of Bax and Bad messenger RNA (mRNA), while H89 reversed the above effects. Moreover, Genistein treatment caused an obvious elevation in mitochondrial membrane potential (MMP) followed by a decline in the levels of intracellular mitochondrial superoxide, but H89 inhibited the regulation of Genistein on MMP and mitochondrial superoxide. Supplementation of Genistein promoted the secretion of E2 and increased the expression of Star and Cyp19a1 mRNA, whereas suppressed the level of progesterone (P4 ) accompanied with a decline in the level of Hsd3b1 mRNA expression. H89 blocked the regulation of Genistein on the secretion of E2 and P4 , and alleviated the ascending of Star and Cyp19a1 elicited by Genistein. Collectively, Genistein protects GCs from OS via cAMP-PKA signaling.


Subject(s)
Cyclic AMP-Dependent Protein Kinases/metabolism , Cyclic AMP/metabolism , Genistein/pharmacology , Granulosa Cells/drug effects , Ovary/drug effects , Oxidative Stress/drug effects , Protective Agents/pharmacology , Animals , Cell Survival , Female , Glutathione/metabolism , Granulosa Cells/metabolism , Granulosa Cells/pathology , Membrane Potential, Mitochondrial , Mice , Mice, Inbred ICR , Mitochondria/drug effects , Mitochondria/metabolism , Ovary/metabolism , Ovary/pathology , Phytoestrogens/pharmacology , Reactive Oxygen Species/metabolism , Signal Transduction , Superoxides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL