Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
J Vet Sci ; 22(6): e41, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34854264

ABSTRACT

BACKGROUND: Our previously prepared ceftiofur (CEF) hydrochloride oily suspension shows potential wide applications for controlling swine Streptococcus suis infections, while the irrational dose has not been formulated. OBJECTIVES: The rational dose regimens of CEF oily suspension against S. suis were systematically studied using a pharmacokinetic-pharmacodynamic model method. METHODS: The healthy and infected pigs were intramuscularly administered CEF hydrochloride oily suspension at a single dose of 5 mg/kg, and then the plasma and pulmonary epithelial lining fluid (PELF) were collected at different times. The minimum inhibitory concentration (MIC), minimal bactericidal concentration, mutant prevention concentration (MPC), post-antibiotic effect (PAE), and time-killing curves were determined. Subsequently, the area under the curve by the MIC (AUC0-24h/MIC) values of desfuroylceftiofur (DFC) in the PELF was obtained by integrating in vivo pharmacokinetic data of the infected pigs and ex vivo pharmacodynamic data using the sigmoid Emax (Hill) equation. The dose was calculated based on the AUC0-24h/MIC values for bacteriostatic action, bactericidal action, and bacterial elimination. RESULTS: The peak concentration, the area under the concentration-time curve, and the time to peak for PELF's DFC were 24.76 ± 0.92 µg/mL, 811.99 ± 54.70 µg·h/mL, and 8.00 h in healthy pigs, and 33.04 ± 0.99 µg/mL, 735.85 ± 26.20 µg·h/mL, and 8.00 h in infected pigs, respectively. The MIC of PELF's DFC against S. suis strain was 0.25 µg/mL. There was strong concentration-dependent activity as determined by MPC, PAE, and the time-killing curves. The AUC0-24h/MIC values of PELF's DFC for bacteriostatic activity, bactericidal activity, and virtual eradication of bacteria were 6.54 h, 9.69 h, and 11.49 h, respectively. Thus, a dosage regimen of 1.94 mg/kg every 72 h could be sufficient to reach bactericidal activity. CONCLUSIONS: A rational dosage regimen was recommended, and it could assist in increasing the treatment effectiveness of CEF hydrochloride oily suspension against S. Suis infections.


Subject(s)
Cephalosporins/administration & dosage , Streptococcal Infections/veterinary , Streptococcus suis , Animals , Cephalosporins/pharmacokinetics , Dose-Response Relationship, Drug , Microbial Sensitivity Tests , Streptococcal Infections/drug therapy , Swine
2.
Article in English | MEDLINE | ID: mdl-34527062

ABSTRACT

OBJECTIVE: Hedyotis diffusa Willd. (HDW) is a famous Chinese herbal medicine, traditionally used to treat cancer in China. Currently, the clinically used drugs for the treatment of hepatocellular carcinoma (HCC) still have poor efficacy and have many side effects. HDW has fewer side effects after taking it, so this study explores the inhibitory effect of HDW on HCC, which may become a promising drug for the treatment of HCC. METHODS: HCC cell lines such as SMMC-7721, SK-hep1, and Hep-G2 were treated with Hedyotis diffusa Willd. (HDW), after which migration was detected via transwell, while the proliferation of these cells was detected via MTT, CCK-8, and colony formation assays. Furthermore, protein levels were evaluated by western blotting, and Hep-G2 cells were implanted in nude mice to establish a xenograft model to evaluate the antitumor effect of the drug. RESULTS: HDW exhibited the ability to inhibit the proliferation and migration of HCC cells. And its anticancer mechanism in hepatocellular carcinoma may be via AKT/mTOR pathway. Moreover, the drug use of HDW in the mouse model system has achieved a good effect. Importantly, it did not cause significant weight loss or hepatorenal toxicity. CONCLUSION: HDW can suppress the activation of the AKT/mTOR pathway in HCC cells, which may bring new light for the treatment of this kind of malignant tumor, but its exact mechanism still needs to be further explored.

3.
Eur J Med Chem ; 223: 113657, 2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34217060

ABSTRACT

As a continuation of our research on antimycobacterial agents, a series of novel quinoxaline-1,4-di-N-oxides (QdNOs) containing various nitrogenous heterocyclic moieties at the R6 position were designed and synthesized. Antimycobacterial activities, as well as the cytotoxic effects, of the compounds were assayed. Four compounds (6b, 6f, 6n, and 6o), characterized by 2-carboxylate ethyl or benzyl ester, 6-imidazolyl or 1,2,4-triazolyl, and a 7-fluorine group, exhibited the most potent antimycobacterial activity against M.tb strain H37Rv (MIC ≤ 0.25 µg/mL) with low toxicity in VERO cells (SI = 169.3-412.1). Compound 6o also exhibited excellent antimycobacterial activity in an M.tb-infected macrophage model and was selected for further exploration of the mode of antimycobacterial action of QdNOs. The results showed that compound 6o was capable of disrupting membrane integrity and disturbing energy homeostasis in M.tb. Furthermore, compound 6o noticeably increased cellular ROS levels and, subsequently, induced autophagy in M.tb-infected macrophages, possibly indicating the pathways of QdNOs-mediated inhibition of intracellular M.tb replication. The in vivo pharmacokinetic (PK) profiles indicated that compounds 6o was acceptably safe and possesses favorable PK properties. Altogether, these findings suggest that compound 6o is a promising antimycobacterial candidate for further research.


Subject(s)
Antitubercular Agents/pharmacology , Autophagy/drug effects , Macrophages/microbiology , Mycobacterium tuberculosis/drug effects , Quinoxalines/chemistry , Animals , Antitubercular Agents/chemistry , Antitubercular Agents/pharmacokinetics , Cell Survival/drug effects , Chlorocebus aethiops , Drug Evaluation, Preclinical , Half-Life , Microbial Sensitivity Tests , Mitochondria/drug effects , Mitochondria/metabolism , Mycobacterium tuberculosis/physiology , Oxides/chemistry , Quinoxalines/pharmacokinetics , Quinoxalines/pharmacology , Rats , Reactive Oxygen Species/metabolism , Structure-Activity Relationship , Vero Cells
4.
Sci Rep ; 7: 41370, 2017 02 01.
Article in English | MEDLINE | ID: mdl-28145487

ABSTRACT

Aditoprim (ADP) has potential use as an antimicrobial agent in animals. However, its pharmacodynamic properties have not been systematically studied yet. In this study, the in vitro antibacterial activities of ADP and its main metabolites were assayed, and the in vivo antibacterial efficacy of ADP for the treatment of swine streptococcosis was evaluated. It was shown that Salmonella and Streptococcus from swine, Escherichia coli and Salmonella from chickens, E. coli, Streptococcus, Mannheimia, Pasteurella from calves, Streptococcus and Mannheimia from sheep, and E. coli, Flavobacterium columnare, Acinetobacter baumannii and Yersinia ruckeri from fishes were highly susceptible to ADP. Haemophilus parasuis from swine, Staphylococcus aureus, Aeromonas punctate, Mycobacterium tuberculosis, Streptococcus agalactiae from fishes, and Klebsiella from calves and sheep showed moderate susceptibility to ADP, whereas E. coli, Actinobacillus pleuropneumonia, Pasteurella, S. aureus, Clostridium perfringens from swine, S. aureus, C. perfringens from chickens, and S. aureus from calves were resistant to ADP. The main metabolites of ADP showed equal activity to that of their parent compound, and the prevention and therapeutic dosages of ADP recommended for swine streptococcosis were 10 and 20~40 mg/kg b.w., respectively. This study firstly showed that ADP had strong antibacterial activity and had potential to be used as a single drug in the treatment of bacterial infectious diseases.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Streptococcal Infections/drug therapy , Swine Diseases/drug therapy , Swine Diseases/microbiology , Trimethoprim/analogs & derivatives , Animals , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , Streptococcal Infections/microbiology , Streptococcal Infections/pathology , Swine , Treatment Outcome , Trimethoprim/metabolism , Trimethoprim/pharmacology , Trimethoprim/therapeutic use
5.
Front Microbiol ; 5: 217, 2014.
Article in English | MEDLINE | ID: mdl-24860564

ABSTRACT

It is a common practice for decades to use of sub-therapeutic dose of antibiotics in food-animal feeds to prevent animals from diseases and to improve production performance in modern animal husbandry. In the meantime, concerns over the increasing emergence of antibiotic-resistant bacteria due to the unreasonable use of antibiotics and an appearance of less novelty antibiotics have prompted efforts to develop so-called alternatives to antibiotics. Whether or not the alternatives could really replace antibiotics remains a controversial issue. This review summarizes recent development and perspectives of alternatives to antibiotics. The mechanism of actions, applications, and prospectives of the alternatives such as immunity modulating agents, bacteriophages and their lysins, antimicrobial peptides, pro-, pre-, and synbiotics, plant extracts, inhibitors targeting pathogenicity (bacterial quorum sensing, biofilm, and virulence), and feeding enzymes are thoroughly discussed. Lastly, the feasibility of alternatives to antibiotics is deeply analyzed. It is hard to conclude that the alternatives might substitute antibiotics in veterinary medicine in the foreseeable future. At the present time, prudent use of antibiotics and the establishment of scientific monitoring systems are the best and fastest way to limit the adverse effects of the abuse of antibiotics and to ensure the safety of animal-derived food and environment.

6.
Anal Biochem ; 459: 18-23, 2014 Aug 15.
Article in English | MEDLINE | ID: mdl-24853343

ABSTRACT

ß-Adrenergic agonists (ß-agonists) are illegally used in animal husbandry, threatening the health of consumers. To realize multianalyte detection of ß-agonists, a ß2-adrenergic receptor (ß2-AR) was cloned from Syrian hamster lung and heterogeneously expressed by Spodoptera frugiperda (Sf9) cells. The recombinant ß2-AR was purified from intracellular soluble proteins of infected Sf9 cells, and was utilized to establish an enzyme-linked-receptor assay (ELRA) to detect a group of ß-agonists simultaneously. This assay was based on direct competitive inhibition of binding of horseradish peroxidase-labeled ractopamine to the immobilized ß2-AR proteins by ß-agonists. The IC50 and limit of detection values for ractopamine were 30.38µgL(-1) and 5.20µgL(-1), respectively. Clenbuterol and salbutamol showed 87.7% and 58.5% cross-reactivities with ractopamine, respectively. This assay is simple, rapid, and environmentally friendly, showing a potential application in the screening of ß-agonists in animal feeds.


Subject(s)
Adrenergic beta-Agonists/analysis , Biosensing Techniques/methods , DNA Restriction Enzymes/metabolism , Receptors, Adrenergic, beta-2/metabolism , Adrenergic beta-Agonists/pharmacology , Animals , Baculoviridae/genetics , Cloning, Molecular , Drug Evaluation, Preclinical , Mesocricetus , Receptors, Adrenergic, beta-2/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sf9 Cells , Spodoptera
7.
Am J Hum Genet ; 91(4): 694-702, 2012 Oct 05.
Article in English | MEDLINE | ID: mdl-23000143

ABSTRACT

The discovery of mutations causing human disease has so far been biased toward protein-coding regions. Having excluded all annotated coding regions, we performed targeted massively parallel resequencing of the nonrepetitive genomic linkage interval at Xq28 of family MRX3. We identified in the binding site of transcription factor YY1 a regulatory mutation that leads to overexpression of the chromatin-associated transcriptional regulator HCFC1. When tested on embryonic murine neural stem cells and embryonic hippocampal neurons, HCFC1 overexpression led to a significant increase of the production of astrocytes and a considerable reduction in neurite growth. Two other nonsynonymous, potentially deleterious changes have been identified by X-exome sequencing in individuals with intellectual disability, implicating HCFC1 in normal brain function.


Subject(s)
Host Cell Factor C1/genetics , Intellectual Disability/genetics , Mutation , RNA, Untranslated/genetics , Amino Acid Sequence , Animals , Astrocytes/metabolism , Binding Sites , Chromatin/genetics , Exome/genetics , Female , Genetic Predisposition to Disease , Humans , Male , Mental Retardation, X-Linked/genetics , Mice , Molecular Sequence Data , Transcription Factors/genetics , X Chromosome/genetics , YY1 Transcription Factor/genetics
SELECTION OF CITATIONS
SEARCH DETAIL