Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Nutrients ; 16(7)2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38612975

ABSTRACT

Aging-related sarcopenia exerts harmful impacts on muscle mass, strength, and physical mobility. Protein supplementation has been demonstrated to augment efficacy of resistance training (RT) in elderly. This study compared the relative effects of different protein supplements on muscle mass, strength, and mobility outcomes in middle-aged and older individuals undergoing RT. A comprehensive search of online databases was performed to identify randomized controlled trials (RCTs) examining the efficacy of protein supplement plus RT in untrained community-dwelling adults, hospitalized, or institutionalized residents who suffered acute or chronic health conditions. Network meta-analysis (NMA) was performed using a frequentist method for all analyses. Treatment effects for main outcomes were expressed as standard mean difference (SMD) with 95% confidence interval (CI). We used the surface-under-the cumulative-ranking (SUCRA) scores to rank probabilities of effect estimation among all identified treatments. Meta-regression analyses were performed to identify any relevant moderator of the treatment efficacy and results were expressed as ß with 95% credible interval (CrI). We finally included 78 RCTs (5272 participants) for analyses. Among the six protein sources identified in this NMA, namely whey, milk, casein, meat, soy, and peanut, whey supplement yielded the most effective treatments augmenting efficacy of RT on muscle mass (SMD = 1.29, 95% CI: 0.96, 1.62; SUCRA = 0.86), handgrip strength (SMD = 1.46, 95% CI: 0.92, 2.00; SUCRA = 0.85), and walking speed (SMD = 0.73, 95% CI: 0.39, 1.07; SUCRA = 0.84). Participant's health condition, sex, and supplementation dose were significant factors moderating the treatment efficacy on muscle mass (ß = 0.74; 95% CrI: 0.22, 1.25), handgrip strength (ß = -1.72; 95% CrI: -2.68, -0.77), and leg strength (ß = 0.76; 95% CrI: 0.06, 1.47), respectively. Our findings suggest whey protein yields the optimal supplements to counter sarcopenia in older individuals undergoing RT.

2.
Int J Mol Sci ; 24(7)2023 Mar 23.
Article in English | MEDLINE | ID: mdl-37047058

ABSTRACT

Knee osteoarthritis (KOA) is associated with a high risk of sarcopenia. Both intra-articular injections (IAIs) and physical therapy (PT) exert benefits in KOA. This network meta-analysis (NMA) study aimed to identify comparative efficacy among the combined treatments (IAI+PT) in patients with KOA. Seven electronic databases were systematically searched from inception until January 2023 for randomized controlled trials (RCTs) reporting the effects of IAI+PT vs. IAI or PT alone in patients with KOA. All RCTs which had treatment arms of IAI agents (autologous conditioned serum, botulinum neurotoxin type A, corticosteroids, dextrose prolotherapy (DxTP), hyaluronic acid, mesenchymal stem cells (MSC), ozone, platelet-rich plasma, plasma rich in growth factor, and stromal vascular fraction of adipose tissue) in combination with PT (exercise therapy, physical agent modalities (electrotherapy, shockwave therapy, thermal therapy), and physical activity training) were included in this NMA. A control arm receiving placebo IAI or usual care, without any other IAI or PT, was used as the reference group. The selected RCTs were analyzed through a frequentist method of NMA. The main outcomes included pain, global function (GF), and walking capability (WC). Meta-regression analyses were performed to explore potential moderators of the treatment efficacy. We included 80 RCTs (6934 patients) for analyses. Among the ten identified IAI+PT regimens, DxTP plus PT was the most optimal treatment for pain reduction (standard mean difference (SMD) = -2.54) and global function restoration (SMD = 2.28), whereas MSC plus PT was the most effective for enhancing WC recovery (SMD = 2.54). More severe KOA was associated with greater changes in pain (ß = -2.52) and WC (ß = 2.16) scores. Combined IAI+PT treatments afford more benefits than do their corresponding monotherapies in patients with KOA; however, treatment efficacy is moderated by disease severity.


Subject(s)
Osteoarthritis, Knee , Sarcopenia , Humans , Exercise Therapy , Hyaluronic Acid , Injections, Intra-Articular , Network Meta-Analysis , Osteoarthritis, Knee/drug therapy , Pain/drug therapy , Randomized Controlled Trials as Topic , Sarcopenia/drug therapy , Treatment Outcome
3.
ACS Appl Mater Interfaces ; 15(18): 21843-21853, 2023 May 10.
Article in English | MEDLINE | ID: mdl-37102323

ABSTRACT

Surgical resection and ablation therapy have been shown to achieve the purpose of a radical cure for liver cancer with a size of less than 3 cm; however, tiny liver cancer lesions of diameters smaller than 2 cm remain challenging to diagnose and cure due to the failure of the generation of new blood vessels within tumors. Emerging evidence has revealed that optical molecular imaging combined with nanoprobes can detect tiny cancer from the perspective of molecular and cellular levels and kill cancer cells by the photothermal effect of nanoparticles in real time, thereby achieving radical goals. In the present study, we designed and synthesized multicomponent and multifunctional ICG-CuS-Gd@BSA-EpCAM nanoparticles (NPs) with a potent antineoplastic effect on tiny liver cancer. Using subcutaneous and orthotopic liver cancer xenograft mouse models, we found that the components of the NPs, including ICG and CuS-Gd@BSA, showed synergistic photothermal effects on the eradication of tiny liver cancer. We also found that the ICG-CuS-Gd@BSA-EpCAM NPs exhibited triple-modal functions of fluorescence imaging, magnetic resonance imaging, and photoacoustic imaging, with targeted detection and photothermal treatment of tiny liver cancer under near-infrared light irradiation. Together, our study demonstrates that the ICG-CuS-Gd@BSA-EpCAM NPs in combination with optical imaging technique might be a potential approach for detecting and noninvasively and radically curing tiny liver cancer by the photothermal effect.


Subject(s)
Antineoplastic Agents , Liver Neoplasms , Nanoparticles , Humans , Animals , Mice , Photothermal Therapy , Epithelial Cell Adhesion Molecule , Phototherapy/methods , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/therapy
4.
Drug Resist Updat ; 64: 100849, 2022 09.
Article in English | MEDLINE | ID: mdl-35842983

ABSTRACT

Angiogenesis is a hallmark of cancer and is required for tumor growth and progression. Antiangiogenic therapy has been revolutionarily developing and was approved for the treatment of various types of cancer for nearly two decades, among which bevacizumab and sorafenib continue to be the two most frequently used antiangiogenic drugs. Although antiangiogenic therapy has brought substantial survival benefits to many cancer patients, resistance to antiangiogenic drugs frequently occurs during clinical treatment, leading to poor outcomes and treatment failure. Cumulative evidence has demonstrated that the intricate interplay among tumor cells, bone marrow-derived cells, and local stromal cells critically allows for tumor escape from antiangiogenic therapy. Currently, drug resistance has become the main challenge that hinders the therapeutic efficacies of antiangiogenic therapy. In this review, we describe and summarize the cellular and molecular mechanisms conferring tumor drug resistance to antiangiogenic therapy, which was predominantly associated with redundancy in angiogenic signaling molecules (e.g., VEGFs, GM-CSF, G-CSF, and IL17), alterations in biological processes of tumor cells (e.g., tumor invasiveness and metastasis, stemness, autophagy, metabolic reprogramming, vessel co-option, and vasculogenic mimicry), increased recruitment of bone marrow-derived cells (e.g., myeloid-derived suppressive cells, tumor-associated macrophages, and tumor-associated neutrophils), and changes in the biological functions and features of local stromal cells (e.g., pericytes, cancer-associated fibroblasts, and endothelial cells). We also review potential biomarkers to predict the response to antiangiogenic therapy in cancer patients, which mainly consist of imaging biomarkers, cellular and extracellular proteins, a certain type of bone marrow-derived cells, local stromal cell content (e.g., pericyte coverage) as well as serum or plasma biomarkers (e.g., non-coding RNAs). Finally, we highlight the recent advances in combination strategies with the aim of enhancing the response to antiangiogenic therapy in cancer patients and mouse models. This review introduces a comprehensive understanding of the mechanisms and biomarkers associated with the evasion of antiangiogenic therapy in cancer, providing an outlook for developing more effective approaches to promote the therapeutic efficacy of antiangiogenic therapy.


Subject(s)
Granulocyte-Macrophage Colony-Stimulating Factor , Neoplasms , Angiogenesis Inhibitors/pharmacology , Angiogenesis Inhibitors/therapeutic use , Animals , Bevacizumab/therapeutic use , Endothelial Cells/metabolism , Endothelial Cells/pathology , Granulocyte Colony-Stimulating Factor/therapeutic use , Granulocyte-Macrophage Colony-Stimulating Factor/therapeutic use , Mice , Neoplasms/drug therapy , Neoplasms/metabolism , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/pathology , Sorafenib/therapeutic use
5.
Phytomedicine ; 92: 153751, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34563984

ABSTRACT

BACKGROUND: Pulmonary arterial hypertension (PAH), characterized by pulmonary artery constriction and vascular remodeling, has a high mortality rate. New drugs for the treatment of PAH urgently need to be developed. PURPOSE: This study was designed to investigate the vasorelaxant activity of OTNA in isolated pulmonary arteries, and explore its molecular mechanism. METHODS: Pulmonary arteries and thoracic aortas were isolated from mice, and vascular tone was tested with a Wire Myograph System. Nitric oxide levels were determined with DAF-FM DA and DAX-J2™ Red. Cellular thermal shift assays, microscale thermophoresis, and molecular docking were used to identify the interaction between OTNA and aryl hydrocarbon receptor (AhR). The levels of PI3K, p-PI3K, Akt, p-Akt, eNOS, p-eNOS, and AhR were analyzed by Western blotting. RESULTS: OTNA selectively relaxed the isolated pulmonary artery rings in an endothelium-dependent manner. Mechanistic study showed that OTNA induced NO production through activation of the PI3K/Akt/eNOS pathway in endothelial cells. Furthermore, we also found that OTNA directly bound to AhR and activated the PI3K/Akt/eNOS pathway to dilate pulmonary arteries by inhibiting AhR. CONCLUSIONS: OTNA relaxes pulmonary arteries by antagonizing AhR. This study provides a new natural antagonist of AhR as a promising lead compound for PAH treatment.


Subject(s)
Phosphatidylinositol 3-Kinases , Pulmonary Artery , Animals , Endothelial Cells/metabolism , Endothelium, Vascular/metabolism , Indole Alkaloids , Mice , Molecular Docking Simulation , Nitric Oxide , Nitric Oxide Synthase Type III/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Pulmonary Artery/metabolism , Receptors, Aryl Hydrocarbon/metabolism , Signal Transduction
6.
Phytomedicine ; 78: 153302, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32823242

ABSTRACT

BACKGROUND: Therapeutic angiogenesis is a novel strategy for the treatment of ischemic diseases that involves promotion of angiogenesis in ischemic tissues via the use of proangiogenic agents. However, effective proangiogenic drugs that activate the Ang2/Tie2 signaling pathway remain scarce. PURPOSE: We aimed to investigate the proangiogenic activity of notoginsenoside R1 (NR1) isolated from total saponins of Panax notoginseng with regard to activation of the Ang2/Tie2 signaling pathway. METHODS: We examined the proangiogenic effects of NR1 by assessing the effects of NR1 on the proliferation, migration, invasion and tube formation of human umbilical vein endothelial cells (HUVECs). The aortic ring assay and vascular endothelial growth factor receptor inhibitor (VRI)-induced vascular regression in the zebrafish model were used to confirm the proangiogenic effects of NR1 ex vivo and in vivo. Furthermore, the molecular mechanism was investigated by Western blot analysis. RESULTS: We found that NR1 promoted the proliferation, mobility and tube formation of HUVECs in vitro. NR1 also increased the number of sprouting vessels in rat aortic rings and rescued VRI-induced vascular regression in zebrafish. NR1-induced angiogenesis was dependent on Tie2 receptor activation mediated by increased autocrine Ang2 in HUVECs, and inhibition of the Ang2/Tie2 pathway abrogated the proangiogenic effects of NR1. CONCLUSIONS: Our results suggest that NR1 promotes angiogenesis by activating the Ang2/Tie2 signaling pathway. Thus, NR1-induced activation of the Ang2/Tie2 pathway is an effective proangiogenic approach. NR1 may be useful agent for the treatment of ischemic diseases.


Subject(s)
Angiopoietin-2/metabolism , Ginsenosides/pharmacology , Neovascularization, Physiologic/drug effects , Receptor, TIE-2/metabolism , Animals , Aorta/drug effects , Aorta/metabolism , Axitinib/pharmacology , Cell Movement/drug effects , Cell Proliferation/drug effects , Embryo, Nonmammalian/drug effects , Human Umbilical Vein Endothelial Cells , Humans , Neovascularization, Physiologic/physiology , Panax notoginseng/chemistry , Rats, Sprague-Dawley , Zebrafish/embryology
7.
Pharmacol Res ; 144: 292-305, 2019 06.
Article in English | MEDLINE | ID: mdl-31048033

ABSTRACT

Ischemic stroke is one of the most lethal and highly disabling diseases that seriously affects the human health and quality of life. A therapeutic angiogenic strategy has been proposed to alleviate ischemia-induced injury by promoting angiogenesis and improving cerebrovascular function in the ischemic regions. The insulin-like growth factor 1 (IGF-1)/insulin-like growth factor 1 receptor (IGF1R) axis is crucial for cerebral angiogenesis and neurogenesis. However, effective drugs that prevent cerebral ischemic injury by inducing cerebral angiogenesis via activation of the IGF1R pathway are lacking. Here, we screened a pro-angiogenic agent ginsenoside F1 (GF1), a ginseng saponin isolated from a traditional Chinese medicine that was widely used in ischemic stroke treatment. It promoted the proliferation, mobility and tube formation of human umbilical vein endothelial cells and human brain microvascular endothelial cells, as well as pericytes recruitment to the endothelial tubes. GF1 stimulated vessel sprouting in the rat arterial ring and facilitated neovascularization in chicken embryo chorioallantoic membrane (CAM). In the in vivo experiments, GF1 rescued the axitinib-induced vascular defect in zebrafish. It also increased the microvessel density (MVD) and improved focal cerebral blood perfusion in the rat middle cerebral artery occlusion (MCAO) model. Mechanism studies revealed that GF1-induced angiogenesis depended on IGF1R activation mediated by the autocrine IGF-1 loop in endothelial cells. Based on our findings, GF1-induced activation of the IGF-1/IGF1R pathway to promote angiogenesis is an effective approach to alleviate cerebral ischemia, and GF1 is a potential agent that improves cerebrovascular function and promotes recovery from ischemic stroke.


Subject(s)
Angiogenesis Inducing Agents/pharmacology , Ginsenosides/pharmacology , Insulin-Like Growth Factor I/metabolism , Receptor, IGF Type 1/metabolism , Signal Transduction/drug effects , Animals , Human Umbilical Vein Endothelial Cells , Humans , Male , Rats, Sprague-Dawley , Rats, Wistar , Zebrafish
8.
Biochem Pharmacol ; 146: 87-100, 2017 12 15.
Article in English | MEDLINE | ID: mdl-29074104

ABSTRACT

Multidrug resistance is the main obstacle in cancer chemotherapy. Emerging evidence demonstrates the important role of autophagy in cancer cell resistance to chemotherapy. Therefore, autophagy inhibition by natural compounds may be a promising strategy for overcoming drug resistance in liver cancer cells. Here, we found that ADCX, a natural cycloartane triterpenoid extracted from the traditional Chinese medicine (TCM) source Cimicifugae rhizoma (Shengma), impaired autophagic degradation by suppressing lysosomal cathepsin B (CTSB) expression in multidrug-resistant liver cancer HepG2/ADM cells, thereby leading to autophagic flux inhibition. Moreover, impairing autophagic flux promoted ADCX-induced apoptotic cell death in HepG2/ADM cells. Interestingly, Akt was overactivated by ADCX treatment, which downregulated CTSB and inhibited autophagic flux. Together, our results provide the first demonstration that an active TCM constituent can overcome multidrug resistance in liver cancer cells via Akt-mediated inhibition of autophagic degradation.


Subject(s)
Apoptosis/drug effects , Carcinoma, Hepatocellular/drug therapy , Drug Resistance, Neoplasm , Liver Neoplasms/drug therapy , Proto-Oncogene Proteins c-akt/metabolism , Saponins/pharmacology , Triterpenes/pharmacology , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Humans , Molecular Structure , Proto-Oncogene Proteins c-akt/genetics , Saponins/chemistry , Triterpenes/chemistry
9.
J Med Chem ; 60(13): 5320-5333, 2017 07 13.
Article in English | MEDLINE | ID: mdl-28595013

ABSTRACT

Bufadienolides are the major pharmacologic constituents of traditional Chinese medicine Chan'su, which is frequently used clinically for cancer treatment in China. Motivated by reducing or avoiding the cardiac toxicity of bufadienolides, we have designed, synthesized, and evaluated the fibroblast activation protein α (FAPα) activated tripeptide arenobufagin prodrugs with the purpose of improving the safety of arenobufagin (a representative bufadienolide). Among these FAPα-activated prodrugs, 3f exhibited the best hydrolytic efficiency by recombinant human FAPα (rhFAPα) and was activated in tumors. The LD50 of 3f was 6.5-fold higher than that of arenobufagin. We also observed that there are nonapparent changes in echocardiography, pathological section of cardiac muscle, and the lactate dehydrogenase activities (LDH) in 3f-treatment tumor-bearing mice, even when the dose reached 3 times the amount of parent drug arenobufagin that was used. Compound 3f also exhibits significant antitumor activity in vitro and in vivo. The improved safety profile and favorable anticancer properties of 3f warrant further studies of the potential clinical implications. Our study suggests that FAPα prodrug strategy is an effective approach for successful increasing the therapeutic window of bufadienolides.


Subject(s)
Antineoplastic Agents/pharmacology , Bufanolides/pharmacology , Cardiotoxicity/drug therapy , Gelatinases/metabolism , Membrane Proteins/metabolism , Oligopeptides/pharmacology , Prodrugs/pharmacology , Serine Endopeptidases/metabolism , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Bufanolides/chemistry , Bufanolides/metabolism , Cardiotoxicity/metabolism , Cardiotoxicity/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Endopeptidases , Female , Humans , Mice , Mice, Inbred BALB C , Molecular Structure , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Oligopeptides/chemistry , Oligopeptides/metabolism , Prodrugs/chemistry , Prodrugs/metabolism , Recombinant Proteins/metabolism , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL