Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
JCI Insight ; 6(8)2021 04 22.
Article in English | MEDLINE | ID: mdl-33705358

ABSTRACT

Currently, no effective therapies exist for fibrodysplasia ossificans progressiva (FOP), a rare congenital syndrome in which heterotopic bone is formed in soft tissues owing to dysregulated activity of the bone morphogenetic protein (BMP) receptor kinase ALK2 (also known as ACVR1). From a screen of known biologically active compounds, we identified saracatinib as a potent ALK2 kinase inhibitor. In enzymatic and cell-based assays, saracatinib preferentially inhibited ALK2, compared with other receptors of the BMP/TGF-ß signaling pathway, and induced dorsalization in zebrafish embryos consistent with BMP antagonism. We further tested the efficacy of saracatinib using an inducible ACVR1Q207D-transgenic mouse line, which provides a model of heterotopic ossification (HO), as well as an inducible ACVR1R206H-knockin mouse, which serves as a genetically and physiologically faithful FOP model. In both models, saracatinib was well tolerated and potently inhibited the development of HO, even when administered transiently following soft tissue injury. Together, these data suggest that saracatinib is an efficacious clinical candidate for repositioning in FOP treatment, offering an accelerated path to clinical proof-of-efficacy studies and potentially significant benefits to individuals with this devastating condition.


Subject(s)
Activin Receptors, Type I/genetics , Benzodioxoles/pharmacology , Bone Morphogenetic Proteins/drug effects , Muscles/drug effects , Myositis Ossificans/genetics , Quinazolines/pharmacology , Activin Receptors, Type I/antagonists & inhibitors , Animals , Benzodioxoles/therapeutic use , Bone Morphogenetic Proteins/metabolism , Drug Evaluation, Preclinical , Gene Knock-In Techniques , Mice , Mice, Transgenic , Muscles/metabolism , Myositis Ossificans/metabolism , Myositis Ossificans/pathology , Ossification, Heterotopic/genetics , Ossification, Heterotopic/metabolism , Ossification, Heterotopic/pathology , Quinazolines/therapeutic use , Zebrafish
2.
Malar J ; 16(1): 147, 2017 04 13.
Article in English | MEDLINE | ID: mdl-28407766

ABSTRACT

BACKGROUND: Blocking malaria transmission is an important step in eradicating malaria. In the field, transmission requires the production of sexual stage Plasmodium parasites, called gametocytes, which are not effectively killed by the commonly used anti-malarials allowing individuals to remain infectious after clearance of asexual parasites. METHODS: To identify new gametocytocidal compounds, a library of 45,056 compounds with diverse structures was screened using a high throughput gametocyte viability assay. The characteristics of active hits were further evaluated against asexual stage parasites in a growth inhibition assay. Their cytotoxicity were tested against mammalian cells in a cytotoxicity assay. The chemical scaffold similarity of active hits were studied using scaffold cluster analysis. RESULTS: A set of 23 compounds were identified and further confirmed for their activity against gametocytes. All the 23 confirmed compounds possess dual-activities against both gametocytes responsible for human to mosquito transmission and asexual parasites that cause the clinical symptoms. Three of these compounds were fourfold more active against gametocytes than asexual parasites. Further cheminformatic analysis revealed three sets of novel scaffolds, including highly selective 4-1H-pyrazol-5-yl piperidine analogs. CONCLUSIONS: This study revealed important new structural scaffolds that can be used as starting points for dual activity anti-malarial drug development.


Subject(s)
Antimalarials/isolation & purification , Antimalarials/pharmacology , Drug Evaluation, Preclinical/methods , High-Throughput Screening Assays , Plasmodium falciparum/drug effects , Antimalarials/chemistry , Antimalarials/toxicity , Cell Survival/drug effects , Hep G2 Cells , Humans , Inhibitory Concentration 50 , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL