Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Int J Mol Sci ; 23(1)2021 Dec 28.
Article in English | MEDLINE | ID: mdl-35008706

ABSTRACT

Viral infections have afflicted human health and despite great advancements in scientific knowledge and technologies, continue to affect our society today. The current coronavirus (COVID-19) pandemic has put a spotlight on the need to review the evidence on the impact of nutritional strategies to maintain a healthy immune system, particularly in instances where there are limited therapeutic treatments. Selenium, an essential trace element in humans, has a long history of lowering the occurrence and severity of viral infections. Much of the benefits derived from selenium are due to its incorporation into selenocysteine, an important component of proteins known as selenoproteins. Viral infections are associated with an increase in reactive oxygen species and may result in oxidative stress. Studies suggest that selenium deficiency alters immune response and viral infection by increasing oxidative stress and the rate of mutations in the viral genome, leading to an increase in pathogenicity and damage to the host. This review examines viral infections, including the novel SARS-CoV-2, in the context of selenium, in order to inform potential nutritional strategies to maintain a healthy immune system.


Subject(s)
SARS-CoV-2/immunology , Selenium/immunology , Selenium/pharmacology , Virus Diseases/diet therapy , Virus Diseases/immunology , Animals , Dietary Supplements , Humans , Reactive Oxygen Species/metabolism , SARS-CoV-2/drug effects , Selenium/deficiency , Selenoproteins/physiology
2.
Connect Tissue Res ; 55(5-6): 391-6, 2014.
Article in English | MEDLINE | ID: mdl-25166894

ABSTRACT

PURPOSE: Activation of transforming growth factor-ß (TGF-ß) signaling and matrix metalloproteinases are involved in hypertrophic scar (HS) formation. Compression therapy is known to be an effective approach for the treatment of hypertrophic scarring; however, the underlying molecular mechanisms remain poorly understood. We investigated the relationship between TGF-ß signaling activation and matrix metalloproteinases in HS fibroblasts during mechanical compressive stress. MATERIALS AND METHODS: Two groups of skin tissue from HS and the nearby normal tissue were obtained from surgical patients and analyzed. Primary fibroblasts from the HS tissue and normal fibroblasts were isolated. Pressure therapy was recapitulated in an in vitro three-dimensional culture model, using mechanical stress produced with the Flexcell FX-4000C Compression Plus System. Quantitative real-time PCR (qPCR) was used to analyze the gene expression profiles in skin tissue and cultured primary cells exposed to compressive stress. Knockdown of SMAD2 and SMAD3 was performed using their specific siRNA in HS and normal fibroblasts subjected to compressive stress, and gene expression was examined by qPCR and Western blot. RESULTS: There was a significant upregulation of the mRNA expression of matrix metalloproteinase-2 (MMP2) and MMP9 in primary HS fibroblasts in response to mechanical stress. In contrast, the mRNA levels of collagen I and collagen III were downregulated in primary HS fibroblasts compared with those in the control cells. SiRNA-mediated knockdown of SMAD3 in the primary fibroblasts exposed to mechanical stress resulted in a decrease in the expression of MMP9 compared to control cells. CONCLUSION: These results demonstrate that compressive stress upregulates MMP9 by SMAD3 but not by SMAD2.


Subject(s)
Cicatrix, Hypertrophic/therapy , Gene Expression Regulation/physiology , Matrix Metalloproteinase 9/metabolism , Signal Transduction/physiology , Smad3 Protein/metabolism , Therapy, Soft Tissue/methods , Transforming Growth Factor beta/metabolism , Biomechanical Phenomena , Blotting, Western , Cicatrix, Hypertrophic/physiopathology , DNA Primers/genetics , Fibroblasts/metabolism , Humans , Immunohistochemistry , RNA Interference , RNA, Small Interfering/genetics , Real-Time Polymerase Chain Reaction
3.
Neural Regen Res ; 8(5): 461-8, 2013 Feb 15.
Article in English | MEDLINE | ID: mdl-25206688

ABSTRACT

Major ozonated autohemotherapy is classically used in treating ischemic disorder of the lower limbs. In the present study, we performed major ozonated autohemotherapy treatment in patients with acute cerebral infarction, and assessed outcomes according to the U.S. National Institutes of Health Stroke Score, Modified Rankin Scale, and transcranial magnetic stimulation motor-evoked potential. Compared with the control group, the clinical total effective rate and the cortical potential rise rate of the upper limbs were significantly higher, the central motor conduction time of upper limb was significantly shorter, and the upper limb motor-evoked potential amplitude was significantly increased, in the ozone group. In the ozone group, the National Institutes of Health Stroke Score was positively correlated with the central motor conduction time and the motor-evoked potential amplitude of the upper limb. Central motor conduction time and motor-evoked potential amplitude of the upper limb may be effective indicators of motor-evoked potentials to assess upper limb motor function in cerebral infarct patients. Furthermore, major ozonated autohemotherapy may promote motor function recovery of the upper limb in patients with acute cerebral infarction.

SELECTION OF CITATIONS
SEARCH DETAIL