Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Biomater Adv ; 159: 213824, 2024 May.
Article in English | MEDLINE | ID: mdl-38490019

ABSTRACT

The marketed paclitaxel (PTX) formulation Taxol relies on the application of Cremophor EL as a solubilizer. The major drawback of Taxol is its hypersensitivity reactions and a pretreatment of anti-allergic drugs is a necessity. Therefore, developing an efficient and safe delivery vehicle is a solution to increase PTX treatment outcomes with minimal adverse effects. In this work, we prepared the amphiphilic peptides (termed AmP) from soybean proteins using a facile two-step method. AmP could efficiently solubilize PTX by self-assembling into mixed micelles with D-α-tocopherol polyethylene glycol succinate (TPGS), a common pharmaceutical expedient (PTX@TPGS-AmP). The intravenously administrated PTX@TPGS-AmP exhibited a slow clearance (0.24 mL·(min·kg)-1) and an enhanced AUC (41.4 µg.h/mL), manifesting a 3.6-fold increase compared to Taxol. In a murine 4T1 tumor model, PTX@TPGS-AmP displayed a superior antitumor effect over Taxol. Importantly, safety assessment showed a high biocompatibility of AmP and an i.v. dose up to 2500 mg/kg led to no observable abnormalities in the mice. In summary, the AmP presents a new green and easily-prepared amphiphilic biomaterial, with promising potential as a pharmaceutical excipient for drug delivery.


Subject(s)
Neoplasms , Paclitaxel , Mice , Animals , Paclitaxel/therapeutic use , Cell Line, Tumor , Drug Delivery Systems , Micelles , alpha-Tocopherol , Peptides
2.
Carbohydr Polym ; 316: 121025, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37321723

ABSTRACT

Inflammatory bowel disease (IBD) is a chronic, life quality-reducing disease with no cures available yet. To develop an effective medication suitable for long-term use is an urgent but unmet need. Quercetin (QT) is a natural dietary flavonoid with good safety and multifaceted pharmacological activities against inflammation. However, orally administrated quercetin yields unproductive outcomes for IBD treatment because of its poor solubility and extensive metabolism in the gastrointestinal tract. In this work, a colon-targeted QT delivery system (termed COS-CaP-QT) was developed, of which the pectin (PEC)/Ca2+ microspheres were prepared and then crosslinked by oligochitosan (COS). The drug release profile of COS-CaP-QT was pH-dependent and colon microenvironment-responsive, and COS-CaP-QT showed preferential distribution in the colon. The mechanism study showed that QT triggered the Notch pathway to regulate the proliferation of T helper 2 (Th2) cells and group 3 innate lymphoid cells (ILC3s) and the inflammatory microenvironment was remodeled. The in vivo therapeutic results revealed that COS-CaP-QT could relieve the colitis symptoms and maintain the colon length and intestinal barrier integrity.


Subject(s)
Drug Delivery Systems , Inflammatory Bowel Diseases , Humans , Drug Delivery Systems/methods , Quercetin/pharmacology , Quercetin/therapeutic use , Delayed-Action Preparations/pharmacology , Immunity, Innate , Pectins/pharmacology , Microspheres , Lymphocytes , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/metabolism , Colon/metabolism , Chitin/pharmacology
3.
Theranostics ; 11(14): 6860-6872, 2021.
Article in English | MEDLINE | ID: mdl-34093858

ABSTRACT

Background: Immunotherapy has profoundly changed the landscape of cancer management and represented the most significant breakthrough. Yet, it is a formidable challenge that the majority of cancers - the so-called "cold" tumors - poorly respond to immunotherapy. To find a general immunoregulatory modality that can be applied to a broad spectrum of cancers is an urgent need. Methods: Magnetic hyperthermia (MHT) possesses promise in cancer therapy. We develop a safe and effective therapeutic strategy by using magnetism-mediated targeting MHT-immunotherapy in "cold" colon cancer. A magnetic liposomal system modified with cell-penetrating TAT peptide was developed for targeted delivery of a CSF1R inhibitor (BLZ945), which can block the CSF1-CSF1R pathway and reduce M2 macrophages. The targeted delivery strategy is characterized by its magnetic navigation and TAT-promoting intratumoral penetration. Results: The liposomes (termed TAT-BLZmlips) can induce ICD and cause excessive CRT exposure on the cell surface, which transmits an "eat-me" signal to DCs to elicit immunity. The combination of MHT and BLZ945 can repolarize M2 macrophages in the tumor microenvironment to relieve immunosuppression, normalize the tumor blood vessels, and promote T-lymphocyte infiltration. The antitumor effector CD8+ T cells were increased after treatment. Conclusion: This work demonstrated that TAT-BLZmlips with magnetic navigation and MHT can remodel tumor microenvironment and activate immune responses and memory, thus inhibiting tumor growth and recurrence.


Subject(s)
Colonic Neoplasms/therapy , Combined Modality Therapy/methods , Hyperthermia , Immunotherapy/methods , Liposomes/chemistry , Magnetic Field Therapy/methods , Magnetite Nanoparticles/chemistry , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/antagonists & inhibitors , Animals , Apoptosis/drug effects , Apoptosis/radiation effects , Benzothiazoles/pharmacokinetics , Benzothiazoles/pharmacology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/metabolism , Cell Line, Tumor , Colonic Neoplasms/diagnostic imaging , Colonic Neoplasms/immunology , Female , Humans , Liposomes/metabolism , Liposomes/radiation effects , Mice , Mice, Inbred BALB C , Mice, Nude , Neoplasm Recurrence, Local/metabolism , Neoplasm Recurrence, Local/therapy , Picolinic Acids/pharmacokinetics , Picolinic Acids/pharmacology , Rats , Tumor Microenvironment/drug effects , Tumor-Associated Macrophages/drug effects , Tumor-Associated Macrophages/metabolism , Xenograft Model Antitumor Assays
4.
Acta Pharm Sin B ; 10(10): 1966-1976, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33163347

ABSTRACT

Inflammatory bowel diseases (IBD) are the incurable chronic recurrent gastrointestinal disorders and currently lack in safe and effective drugs. In this study, patchouli alcohol, a main active compound of traditional Chinese herb patchouli, was developed into biomimetic liposomes for macrophage-targeting delivery for IBD treatment. The developed lactoferrin-modified liposomes (LF-lipo) can specifically bind to LRP-1 expressed on the activated colonic macrophages and achieve cell-targeting anti-inflammatory therapy. LF-lipo reduced the levels of inflammatory cytokines and ROS and suppressed the MAPK/NF-κB pathway. LF-lipo also suppressed the formation of NLRP3 inflammasome and the consequent IL-1ß activation. LF-lipo showed improved therapeutic efficacy in a DSS-induced colitis murine model, evidenced by the reduced disease activity index, the improved colon functions, and the downregulated inflammatory cytokines in the colon. LF-lipo provided an effective and safe macrophage-targeting delivery and therapeutic strategy for addressing the unmet medical need in IBD management.

6.
Biomater Sci ; 8(4): 1160-1170, 2020 Feb 21.
Article in English | MEDLINE | ID: mdl-31848537

ABSTRACT

Mesenchymal stem cell (MSC)-based biomimetic delivery has been actively explored for drug accumulation and penetration into tumors by taking advantage of the tumor-tropic and penetration properties of MSCs. In this work, we further demonstrated the feasibility of MSC-mediated nano drug delivery, which was characterized by the "Trojan horse"-like transport via an endocytosis-exocytosis-endocytosis process between MSCs and cancer cells. Chlorin e6 (Ce6)-conjugated polydopamine nanoparticles (PDA-Ce6) were developed and loaded into the MSCs. Phototherapeutic agents are safe to the MSCs, and their very low dark toxicity causes no impairment of the inherent properties of MSCs, including tumor-homing ability. The MSCs loaded with PDA-Ce6 (MSC-PDA-Ce6) were able to target and penetrate into tumors and exocytose 60% of the payloads in 72 h. The released PDA-Ce6 NPs could penetrate deep and be re-endocytosed by the cancer cells. MSC-PDA-Ce6 tended to accumulate in the lungs and delivered PDA-Ce6 into the tumors after intravenous injection in the mouse model with lung melanoma metastasis. Phototoxicity can be selectively triggered in the tumors by sequentially treating with near-infrared irradiation to induce photodynamic therapy (PDT) and photothermal therapy (PTT). The MSC-based biomimetic delivery of PDA-Ce6 nanoparticles is a potential method for dual phototherapy against lung melanoma metastasis.


Subject(s)
Indoles/chemistry , Lung Neoplasms/secondary , Lung Neoplasms/therapy , Melanoma/therapy , Mesenchymal Stem Cells/cytology , Photosensitizing Agents/chemistry , Polymers/chemistry , Porphyrins/administration & dosage , Administration, Intravenous , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Chlorophyllides , Endocytosis , Humans , Male , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/chemistry , Mice , Photochemotherapy , Porphyrins/chemistry , Porphyrins/pharmacology , Xenograft Model Antitumor Assays
7.
ACS Appl Mater Interfaces ; 10(36): 30201-30213, 2018 Sep 12.
Article in English | MEDLINE | ID: mdl-30113810

ABSTRACT

The unsatisfactory therapeutic outcome for glioma is mainly due to the poor blood-brain barrier (BBB) permeability and inefficient accumulation in the glioma area of chemotherapeutic agents. The existing drug delivery strategies can increase drug transport to the brain but are restricted by side effects and/or poor delivery efficiency. In this study, potent brain penetration enhancers were screened from the active components of aromatic resuscitation drugs used in traditional Chinese medicine. A novel glioma-targeting system based on enhancer-modified albumin nanoparticles was developed to safely and efficiently deliver drugs to the glioma regions in the brain. The nanoparticles improved the transport of nanoparticles across brain capillary endothelial cell (BCEC) monolayer by increasing endocytosis in endothelial cells and causing BBB disruption. In vivo imaging studies demonstrated that the systems could enter the brain and subsequently accumulate in glioma cells with a much higher targeting efficiency than that of transferrin-modified albumin nanoparticles. Of note, the nanoparticles could be captured and penetrate through endothelial cells fenestrae in pineal gland, which is suggestive of an effective way to deliver a nanosystem to the brain by bypassing the BBB. The nanoparticles showed good biocompatibility and negligible cytotoxicity. The results reveal an efficient and safe strategy for brain drug delivery in glioma therapy.


Subject(s)
Albumins/chemistry , Brain Neoplasms/drug therapy , Brain/metabolism , Drug Delivery Systems , Glioma/drug therapy , Nanoparticles/chemistry , Blood-Brain Barrier/metabolism , Cell Line, Tumor , Humans , Nanoparticles/administration & dosage
8.
ACS Appl Mater Interfaces ; 8(47): 32159-32169, 2016 Nov 30.
Article in English | MEDLINE | ID: mdl-27808492

ABSTRACT

Chemotherapy is one of the most important strategies for glioma treatment. However, the "impermeability" of the blood-brain barrier (BBB) impedes most chemotherapeutics from entering the brain, thereby rendering very few drugs suitable for glioma therapy, letting alone application of a combination of chemotherapeutics. Thereby, there is a pressing need to overcome the obstacles. A dual-targeting strategy was developed by a combination of magnetic guidance and transferrin receptor-binding peptide T7-mediated active targeting delivery. The T7-modified magnetic PLGA nanoparticle (NP) system was prepared with co-encapsulation of the hydrophobic magnetic nanoparticles and a combination of drugs (i.e., paclitaxel and curcumin) based on a "one-pot" process. The combined drugs yielded synergistic effects on inhibition of tumor growth via the mechanisms of apoptosis induction and cell cycle arrest, displaying significantly increased efficacy relative to the single use of each drug. Dual-targeting effects yielded a >10-fold increase in cellular uptake studies and a >5-fold enhancement in brain delivery compared to the nontargeting NPs. For the in vivo studies with an orthotopic glioma model, efficient brain accumulation was observed by using fluorescence imaging, synchrotron radiation X-ray imaging, and MRI. Furthermore, the antiglioma treatment efficacy of the delivery system was evaluated. With application of a magnetic field, this system exhibited enhanced treatment efficiency and reduced adverse effects. All mice bearing orthotopic glioma survived, compared to a 62.5% survival rate for the combination group receiving free drugs. This dual-targeting, co-delivery strategy provides a potential method for improving brain drug delivery and antiglioma treatment efficacy.


Subject(s)
Nanoparticles , Animals , Brain Neoplasms , Cell Line, Tumor , Curcumin , Drug Delivery Systems , Glioma , Lactic Acid , Mice , Mice, Inbred BALB C , Paclitaxel , Polyglycolic Acid , Polylactic Acid-Polyglycolic Acid Copolymer
9.
Mol Pharm ; 12(3): 922-31, 2015 Mar 02.
Article in English | MEDLINE | ID: mdl-25622075

ABSTRACT

Hepatocellular carcinoma (HCC) is one of the most common causes of cancer-related mortality worldwide. Herein, we first reported the codelivery of sorafenib and curcumin by directed self-assembled nanoparticles (SCN) to enhance the therapeutic effect on HCC. SCN was formed by employing the hydrophobic interactions among the lipophilic structure in sorafenib, curcumin, and similar hydrophobic segments of polyethylene glycol derivative of vitamin E succinate (PEG-VES), which comprised uniform spherical particles with particle size of 84.97 ± 6.03 nm. SCN presented superior effects over sorafenib, curcumin, and their physical mixture (Sora + Cur) on enhancing in vitro cytotoxicity and cell apoptosis in BEL-7402 cells and Hep G2 cells, and antiangiogenesis activities in tube formation and microvessel formation from aortic rings. Moreover, the tissue concentration of sorafenib and curcumin in gastrointestinal tract and major organs were significantly improved after their coassembly into SCN. In particular, in BEL-7402 cells induced tumor xenograft, SCN treatment displayed the obviously enhanced inhibitory effect on tumor progression over free drug monotherapy or their physical mixture, with significantly increased antiproliferation and antiangiogenesis capability. Thereby, the codelivered nanoassemblies of sorafenib and curcumin provided a promising strategy to enhance the combinational therapy of HCC.


Subject(s)
Antineoplastic Agents/administration & dosage , Curcumin/administration & dosage , Liver Neoplasms, Experimental/drug therapy , Niacinamide/analogs & derivatives , Phenylurea Compounds/administration & dosage , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/chemistry , Apoptosis/drug effects , Biopharmaceutics , Cell Line, Tumor , Cell Proliferation/drug effects , Curcumin/chemistry , Curcumin/pharmacokinetics , Drug Delivery Systems , Hep G2 Cells , Humans , Liver Neoplasms, Experimental/blood supply , Liver Neoplasms, Experimental/pathology , Mice , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/pathology , Niacinamide/administration & dosage , Niacinamide/chemistry , Niacinamide/pharmacokinetics , Phenylurea Compounds/chemistry , Phenylurea Compounds/pharmacokinetics , Sorafenib , Tissue Distribution , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL