Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Publication year range
1.
J Dairy Sci ; 106(11): 7630-7650, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37641262

ABSTRACT

Objectives were to determine the effects of supplementing rumen-protected choline (RPC) on hepatic composition and secretion of triacylglycerol-rich lipoprotein when cows were subjected to feed restriction to develop fatty liver. It was hypothesized that RPC reduces hepatic triacylglycerol by enhancing secretion of hepatic lipoprotein. Pregnant, nonlactating parous Holstein cows (n = 33) at mean (± standard deviation) 234 ± 2.2 d of gestation were blocked by body condition (3.79 ± 0.49) and assigned to receive 0 g/d (CON), 25.8 g/d choline ion from a RPC product containing 28.8% choline chloride (CC; treatment L25.8), or 25.8 g/d of choline ion from a RPC product containing 60.0% CC (H25.8). Cows were fed for ad libitum intake for the first 5 d and restricted to 41% of the net energy for lactation required for maintenance and pregnancy from d 6 to 13. Intake of metabolizable methionine was maintained at 18 g/d during feed restriction by supplying rumen-protected methionine. Hepatic tissue was sampled on d 6 and 13 and analyzed for triacylglycerol and glycogen, and mRNA expression of hepatic tissue was investigated. On d 14, cows were not fed and received a 10% solution of tyloxapol intravenously at 120 mg/kg of body weight to block hydrolysis of triacylglycerols in very low density lipoprotein (VLDL). Blood was sampled sequentially for 720 min and analyzed for concentration of triacylglycerol and total cholesterol. Lymph was sampled 6 h after tyloxapol infusion, and analyzed for concentrations of fatty acids, ß-hydroxybutyrate, glucose, triacylglycerol, and total cholesterol. A sample of serum collected at 720 min after tyloxapol was assayed for the metabolome composition. The area under the curve (AUC) of serum triacylglycerol, VLDL cholesterol, and total cholesterol were calculated. Orthogonal contrasts evaluated the effect of supplementing RPC (CON vs. [1/2 L25.8 + 1/2 H25.8]) and source of RPC (L25.8 vs. H25.8). Least squares means and standard errors of the means are presented in sequence as CON, L25.8, H25.8. During feed restriction, supplementation of RPC reduced hepatic triacylglycerol (9.0 vs. 4.1 vs. 4.5 ± 0.6%) and increased glycogen contents (1.9 vs. 3.5 vs. 4.1 ± 0.2%). Similarly, supplementation of RPC increased the expression of transcripts involved in the synthesis and assembly of lipoproteins (MTTP), cellular autophagy (ATG3), and inflammation (TNFA), and reduced the expression of transcripts associated with mitochondrial oxidation of fatty acids (HADHA, MLYCD) and stabilization of lipid droplets (PLIN2). After infusion of tyloxapol, RPC increased the AUC for serum triacylglycerol (21,741 vs. 32,323 vs. 28,699 ± 3,706 mg/dL × min) and VLDL cholesterol (4,348 vs. 6,465 vs. 5,740 ± 741 mg/dL × min) but tended to reduce the concentrations of triacylglycerol in lymph (16.7 vs. 13.8 vs. 11.9 ± 1.9 mg/dL). Feeding RPC tended to increase the concentrations of 89 metabolites in serum, after adjusting for false discovery, including 3 acylcarnitines, 1 AA-related metabolite, 11 bile acids, 1 ceramide, 6 diacylglycerols, 2 dihydroceramides, 1 glycerophospholipid, and 64 triacylglycerols compared with CON. Feeding 25.8 g/d of choline ion as RPC mediated increased hepatic triacylglycerol secretion to promote lipotropic effects that reduced hepatic lipidosis in dairy cows.

2.
J Dairy Sci ; 106(10): 6860-6879, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37210357

ABSTRACT

Objectives were to determine the effect of supplementing increased amounts of rumen-protected choline (RPC) from sources with low (L, 28.8%) or high (H, 60.0%) concentration of choline chloride on hepatic metabolism when cows were subjected to feed restriction to develop fatty liver. It was hypothesized that increased supplementation of RPC reduces hepatic triacylglycerol and enhances glycogen concentrations. Pregnant, nonlactating multiparous Holstein cows (n = 110) at mean (± standard deviation) 232 ± 3.9 d of gestation were blocked by body condition (4.01 ± 0.52) and assigned to receive 0 (CON), 12.9 (L12.9 or H12.9), or 25.8 (L25.8 or H25.8) g/d of choline ion. Cows were fed for ad libitum intake on d 1 to 5 and restricted to 50% of the NEL required for maintenance and pregnancy from d 6 to 13. Intake of metabolizable methionine was maintained at 19 g/d during the feed restriction period by supplying rumen-protected methionine. Hepatic tissue was sampled on d 6 and 13 and analyzed for triacylglycerol, glycogen, and mRNA expression of genes involved in choline, glucose, and fatty acids metabolism, cell signaling, inflammation, autophagy, lipid droplet dynamics, lipophagy, and endoplasmic reticulum stress response. Blood was sampled and analyzed for concentrations of fatty acids, ß-hydroxybutyrate (BHB), glucose, triacylglycerol, total cholesterol, and haptoglobin. Orthogonal contrasts evaluated the effect of supplementing RPC [CON vs. (1/4·L12.9 + 1/4·L25.8 + 1/4·H12.9 + 1/4·H25.8)], source of RPC [(1/2·L12.9 + 1/2·L25.8) vs. (1/2·H12.9 + 1/2·H25.8)], amount of RPC [(1/2·L12.9 + 1/2·H12.9) vs. (1/2·L25.8 + 1/2·H25.8)], and interaction between source and amount [(1/2·L12.9 + 1/2·H25.8) vs. (1/2·H12.9 + 1/2·L25.8)]. Least squares means and standard error of the means are presented in sequence as CON, L12.9, L25.8, H12.9, H25.8. Supplementation of RPC reduced hepatic triacylglycerol (9.3 vs. 6.6 vs. 5.1 vs. 6.6 vs. 6.0 ± 0.6% as-is) and increased glycogen contents (1.8 vs. 2.6 vs. 3.6 vs. 3.1 vs. 4.1 ± 0.2% as-is) on d 13 of the experiment. Feeding RPC reduced serum haptoglobin (136.6 vs. 85.6 vs. 80.6 vs. 82.8 vs. 81.2 ± 4.6 µg/mL) during the feed restriction period; however, blood concentrations of fatty acids, BHB, glucose, triacylglycerol, and total cholesterol did not differ among treatments. During feed restriction, supplementation of RPC enhanced the mRNA expression of genes related to choline metabolism (BHMT), uptake of fatty acids (CD36), and autophagy (ATG3), and reduced the expression of a transcript associated with endoplasmic reticulum stress response (ERN1). An increase in the amount of choline ion from 12.9 to 25.8 g/d enhanced the mRNA expression of genes associated with synthesis and assembly of lipoproteins (APOB100), and inflammation (TNFA), whereas it reduced the expression of genes linked to gluconeogenesis (PC), oxidation of fatty acids (ACADM, MMUT), ketogenesis (ACAT1), and synthesis of antioxidants (SOD1) on d 13 of the experiment. Feeding RPC, independent of the product used, promoted lipotropic effects that reduced hepatic lipidosis in dairy cows.


Subject(s)
Cattle Diseases , Fatty Liver , Pregnancy , Female , Cattle , Animals , Choline/metabolism , Diet/veterinary , Dietary Supplements , Rumen/metabolism , Haptoglobins/metabolism , Lactation , Fatty Liver/veterinary , Liver/metabolism , Fatty Acids/metabolism , Triglycerides/metabolism , Glucose/metabolism , Inflammation/veterinary , Cholesterol/metabolism , Glycogen/metabolism , Methionine/metabolism , RNA, Messenger/metabolism , Milk/metabolism , Cattle Diseases/metabolism
3.
J Dairy Sci ; 106(2): 954-973, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36543649

ABSTRACT

The objectives of the experiment were to determine the effects of supplementing 2 amounts of 25-hydroxyvitamin D3 (calcidiol; CAL) compared with equal amounts of vitamin D3 (cholecalciferol; CHOL) on serum concentrations, absorptions, and retentions of Ca, Mg, and P in periparturient dairy cows. One hundred seventy-seven (133 parous and 44 nulliparous) pregnant Holstein cows were enrolled in the experiment. Cows were blocked by parity and previous lactation milk yield (parous) or genetic merit for energy-corrected milk yield (nulliparous) and assigned randomly to receive 1 or 3 mg/d of CAL or CHOL in a 2 × 2 factorial arrangement of treatments. Treatments were provided to individual cows as a top-dress to the prepartum diet from 250 d gestation until parturition. The prepartum diet had a dietary cation-anion difference of -128 mEq/kg of dry matter. All cows were fed a common postpartum diet containing 46 µg of vitamin D3/kg of dry matter without further supplementation of treatments. Concentrations of vitamin D metabolites, Ca, Mg, and P in serum were measured pre- and postpartum, in addition to total-tract digestibility and urinary excretion of Ca, Mg, and P in the prepartum period. Feeding 3 mg compared with 1 mg of CAL increased serum 25-hydroxyvitamin D3 (CAL1 = 94 vs. CAL3 = 173 ± 3 ng/mL). In comparison, the increment in serum 25-hydroxyvitamin D3 from feeding 3 mg compared with 1 mg of CHOL was small (CHOL1 = 58 vs. CHOL3 = 64 ± 3 ng/mL). Feeding CAL increased prepartum concentration of P in serum compared with CHOL (CHOL = 1.87 vs. CAL = 2.01 ± 0.02 mM), regardless of the amount fed, but neither source nor amount affected prepartum Ca or Mg in serum. Feeding CAL increased serum Ca and P for the first 11 d postpartum compared with CHOL (CHOL = 2.12 vs. CAL = 2.16 ± 0.01 mM serum Ca; CHOL = 1.70 vs. CAL = 1.78 ± 0.02 mM serum P) but the amount of vitamin D did not affect postpartum concentrations of Ca, Mg, and P in serum. Feeding CAL increased prepartum apparent digestibility of Ca compared with CHOL (CHOL = 26.6 vs. CAL = 33.5 ± 2.8%) but treatments did not affect Ca retention prepartum. Neither source nor amount of vitamin D affected Mg and P apparent digestibility, but CAL decreased the concentration of P excreted in urine during the prepartum period (CHOL = 1.8 vs. CAL = 0.8 ± 0.3 g/d). Calcidiol tended to increase the amount of Ca secreted in colostrum (CHOL = 9.1 vs. CAL = 11.2 ± 0.9 g/d) and Ca excreted in urine postpartum (CHOL = 0.4 vs. CAL = 0.6 ± 0.1 g/d) compared with CHOL. Collectively, feeding CAL at 1 or 3 mg/d compared with CHOL in the last 24 d of gestation is an effective way to increase periparturient serum P concentration and postpartum serum Ca of dairy cows fed a prepartum diet with negative DCAD.


Subject(s)
Calcium , Vitamin D , Pregnancy , Female , Cattle , Animals , Vitamin D/metabolism , Magnesium , Calcifediol/metabolism , Dietary Supplements , Phosphorus , Diet/veterinary , Cholecalciferol/metabolism , Calcium, Dietary , Vitamins , Lactation , Milk/metabolism , Postpartum Period
4.
J Dairy Sci ; 106(2): 974-989, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36526464

ABSTRACT

The objectives of this experiment were to determine the effects of supplementing 25-hydroxyvitamin D3 (calcidiol, CAL) compared with vitamin D3 (cholecalciferol, CHOL) at 1 or 3 mg/d in late gestation on production outcomes of dairy cows. One hundred thirty-three parous and 44 nulliparous pregnant Holstein cows were enrolled in the experiment. Cows were blocked by parity and previous lactation milk yield (parous) or genetic merit (nulliparous) and assigned randomly to receive 1 or 3 mg/d of CAL or CHOL in a 2 × 2 factorial arrangement of treatments (CAL1, CAL3, CHOL1, and CHOL3). Treatments were provided to individual cows as a top-dress to the prepartum diet from 250 d in gestation until parturition. The prepartum diet had a dietary cation-anion difference of -128 mEq/kg of dry matter. Production and disease were evaluated for the first 42 d in milk, and reproduction was evaluated to 300 d in milk. Incidence of postpartum diseases did not differ among treatments. Feeding CAL compared with CHOL increased yields of colostrum and colostrum fat, protein, and total solids, resulting in an increased amount of net energy for lactation secreted as colostrum (CHOL = 7.0 vs. CAL = 9.0 ± 0.7 Mcal). An interaction between source and amount was observed for milk yield: CAL3 increased milk yield compared with CHOL3 (CHOL3 = 34.1 vs. CAL3 = 38.7 ± 1.4 kg/d) but milk yield did not differ between CAL1 and CHOL1 (CHOL1 = 36.9 vs. CAL1 = 36.4 ± 1.4 kg/d). Concentrations of serum calcidiol on day of calving and average serum Ca from d 2 to 11 postpartum were positively associated with milk yield in the first 42 d in milk. Interactions between source and amount of vitamin D were also observed for pregnancy after first AI: the percentage of cows receiving CHOL1 and CAL3 that became pregnant was smaller than that of cows receiving CHOL3 and CAL1. However, pregnancy per AI and pregnancy by 300 d in milk did not differ among treatments. Overall, CAL3 increased milk yield compared with CHOL3, whereas in cows fed 1 mg/d (CAL1 and CHOL1), the source of vitamin D generally had no effect. The effect of CAL3 may be explained in part by serum CAL concentrations and postpartum serum Ca, which were associated with milk yield.


Subject(s)
Calcifediol , Dietary Supplements , Female , Pregnancy , Cattle , Animals , Calcifediol/metabolism , Diet/veterinary , Vitamin D/pharmacology , Vitamin D/metabolism , Postpartum Period , Lactation , Cholecalciferol/metabolism , Milk/metabolism , Parity , Vitamins/metabolism
5.
J Dairy Sci ; 104(10): 10796-10811, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34334204

ABSTRACT

Objectives were to determine the effect of supplementing 2 sources of vitamin D, cholecalciferol (CH) or calcidiol (CA), at 1 (1mg) or 3 mg/d (3mg) prepartum on concentrations of vitamin D metabolites in plasma, measures of innate immune function, and leukocyte mRNA expression. Parous Holstein cows (n = 99) were assigned to a daily treatment administered as top-dress containing either 1 or 3 mg of CH (CH1 or CH3) or of CA (CA1 or CA3) from 250 d of gestation until calving. Plasma concentrations of vitamin D, immune cell population in blood, cell adhesion markers, and granulocyte phagocytosis and oxidative burst were evaluated pre- and postpartum. The mRNA expression in leukocytes was determined at 270 d of gestation and 3 d postpartum for genes involved in cell migration, pathogen recognition receptors, cell signaling, cytokines, antimicrobial mechanisms, oxidative burst, and Ca and vitamin D metabolism. Concentrations of vitamin D3 increased in cows fed CH, whereas those of 25-hydroxyvitamin D3 increased in cows fed CA. Percentage of granulocytes from total leukocytes differed with amount of vitamin D pre- (1mg = 24.5 vs. 3mg = 37.9%) and postpartum (1mg = 22.0 vs. 3mg = 31.0%), thus shifting mononuclear cells in the opposite direction pre- (1mg = 75.5 vs. 3mg = 62.1%) and postpartum (1mg = 78.0 vs. 3mg = 69.0%). Granulocytes displaying phagocytosis (1mg = 69.0 vs. 3mg = 62.9%) and intensity of phagocytosis prepartum (1mg = 7.46 vs. 3mg = 7.28) tended to be less in cows fed 3mg compared with 1mg. During prepartum, CA increased mRNA expression of genes related to cell adhesion and migration (CD44, ICAM1, ITGAL, ITGB1, LGALS8, SELL), pathogen recognition receptor (NOD2, TLR2, TLR6), cell signaling (FOS, JUN, NFKB2), cytokine signaling (IL1B, IL1R1, IL1RN), antimicrobial mechanisms (CTSB, LYZ), and Ca metabolism (ATP2B1, STIM1, TRPV5) compared with CH. Similarly, postpartum, CA increased mRNA expression of genes related to cell adhesion and migration (CXCR2, SELL, TLN1), cell signaling (AKT2), cytokines (CCL2, IL1R1, ILRN), antimicrobial mechanisms (DEFB3), oxidative burst (RAC2), and calcium metabolism (CALM3) compared with CH. Feeding additional vitamin D in the last 3 wk of gestation changed the profile of blood leukocytes and attenuated granulocyte phagocytosis during the transition period, whereas supplementing CA prepartum increased mRNA expression of genes involved in immune cell function, including genes related to pathogen recognition and antimicrobial effects of leukocytes.


Subject(s)
Lactation , Vitamin D , Animal Feed/analysis , Animals , Cattle , Diet/veterinary , Female , Milk , Postpartum Period , RNA, Messenger
SELECTION OF CITATIONS
SEARCH DETAIL