Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Sci Rep ; 11(1): 17747, 2021 09 07.
Article in English | MEDLINE | ID: mdl-34493757

ABSTRACT

Deregulation of synaptic function and neurotransmission has been linked with the development of major depression disorder (MDD). Tianeptine (Tian) has been used as antidepressant with anxiolytic properties and recently as a nootropic to improve cognitive performance, but its mechanism of action is unknown. We conducted a proteomic study on the hippocampal synaptosomal fractions of adult male Wistar rats exposed to chronic social isolation (CSIS, 6 weeks), an animal model of depression and after chronic Tian treatment in controls (nootropic effect) and CSIS-exposed rats (lasting 3 weeks of 6-week CSIS) (therapeutic effect). Increased expression of Syn1 and Camk2-related neurotransmission, vesicle transport and energy processes in Tian-treated controls were found. CSIS led to upregulation of proteins associated with actin cytoskeleton, signaling transduction and glucose metabolism. In CSIS rats, Tian up-regulated proteins involved in mitochondrial energy production, mitochondrial transport and dynamics, antioxidative defense and glutamate clearance, while attenuating the CSIS-increased glycolytic pathway and cytoskeleton organization proteins expression and decreased the expression of proteins involved in V-ATPase and vesicle endocytosis. Our overall findings revealed that synaptic vesicle dynamics, specifically exocytosis, and mitochondria-related energy processes might be key biological pathways modulated by the effective nootropic and antidepressant treatment with Tian and be a potential target for therapeutic efficacy of the stress-related mood disorders.


Subject(s)
Antidepressive Agents/pharmacology , Depressive Disorder/drug therapy , Mitochondria/drug effects , Nootropic Agents/pharmacology , Proteome/drug effects , Social Isolation , Synaptic Vesicles/drug effects , Thiazepines/pharmacology , Animals , Anti-Anxiety Agents/pharmacology , Anti-Anxiety Agents/therapeutic use , Antidepressive Agents/therapeutic use , Depressive Disorder/physiopathology , Disease Models, Animal , Drug Evaluation, Preclinical , Gene Expression Regulation/drug effects , Hippocampus/drug effects , Hippocampus/ultrastructure , Male , Mitochondria/physiology , Nerve Tissue Proteins/biosynthesis , Nerve Tissue Proteins/genetics , Nootropic Agents/therapeutic use , Protein Interaction Mapping , Rats , Rats, Wistar , Signal Transduction/drug effects , Thiazepines/therapeutic use
2.
Neuropharmacology ; 62(5-6): 2034-9, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22261382

ABSTRACT

Glutamatergic agents have been conceptualized as powerful, fast-acting alternatives to monoaminergic-based antidepressants. NMDA receptor antagonists such as ketamine or MK-801 are therapeutically effective, but their clinical use is hampered by psychotomimetic effects, accompanied by neurotoxicity in the retrosplenial and cingulate cortex. Antagonists of metabotropic mGlu5 receptors like MPEP elicit both robust antidepressant and anxiolytic effects; however, the underlying mechanisms are yet unknown. mGlu5 receptors closely interact with NMDA receptors, but whether MPEP induces neurotoxicity similar to NMDA receptor antagonists has not been elucidated. We show here using c-Fos brain mapping that MPEP administration results in a restricted activation of distinct stress-related brain areas, including the bed nucleus of stria terminalis (BNST), central nucleus of the amygdala, and paraventricular nucleus of the hypothalamus (PVNH), in a pattern similar to that induced by classical antidepressants and anxiolytics. Unlike the NMDA antagonist MK-801, MPEP does not injure the adult retrosplenial cortex, in which it fails to induce heat shock protein 70 (Hsp70). Moreover, MPEP does not elicit to the same extent as MK-801 apoptosis in cortical areas at perinatal stages, as revealed by caspase 3 expression. These data identify new cellular targets for the anxiolytic and antidepressant effect of MPEP, indicating also in addition that in contrast to MK-801, it lacks the cortical neurotoxicity associated with psychotomimetic side-effects.


Subject(s)
Anti-Anxiety Agents/pharmacology , Antidepressive Agents/pharmacology , Brain/drug effects , Excitatory Amino Acid Antagonists/pharmacology , Pyridines/pharmacology , Receptors, Metabotropic Glutamate/antagonists & inhibitors , Amygdala/drug effects , Amygdala/metabolism , Animals , Cell Count , Dizocilpine Maleate/pharmacology , HSP72 Heat-Shock Proteins/metabolism , Hypothalamus/drug effects , Hypothalamus/metabolism , Male , Mice , Neurons/drug effects , Neurons/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Receptor, Metabotropic Glutamate 5 , Septal Nuclei/drug effects , Septal Nuclei/metabolism
3.
Behav Brain Res ; 228(2): 328-32, 2012 Mar 17.
Article in English | MEDLINE | ID: mdl-22197296

ABSTRACT

Glutamate is the main excitatory neurotransmitter in the central nervous system. A hypoglutamatergic state is believed to play an important role in the pathophysiology of schizophrenia. The release of glutamate in the brain is modulated by a class of vesicular glutamate transporters, VGLUT1-3. Among them, VGLUT1 represents the isoform predominantly expressed in the neocortex and hippocampus. Here we investigated the potential involvement of VGLUT1 deficiency in generating schizophrenia-like abnormalities by testing mice with diminished expression of VGLUT1 in several behavioural tests relevant for schizophrenia. We found behavioural alterations in these mice resembling correlates of schizophrenia, such as working- and social memory impairments and deficits in prepulse inhibition (PPI) of the acoustic startle reflex (ASR), but normal locomotor behaviour under basal conditions. Our data may be important for a better understanding of the contribution of reduced VGLUT1-mediated presynaptic glutamatergic neurotransmission in the generation of several behavioural abnormalities associated with schizophrenia.


Subject(s)
Memory Disorders/genetics , Memory, Short-Term/physiology , Sensory Gating/genetics , Social Behavior , Vesicular Glutamate Transport Proteins/deficiency , Acoustic Stimulation/adverse effects , Analysis of Variance , Animals , Exploratory Behavior/physiology , Male , Maze Learning/physiology , Mice , Mice, Inbred C57BL , Mice, Knockout , Reflex, Startle/genetics , Vesicular Glutamate Transport Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL