Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Int J Biol Macromol ; 258(Pt 2): 129168, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38171432

ABSTRACT

Tyrosinase is a key enzyme in enzymatic browning, causing quality losses in food through the oxidation process. Thus, the discovery of an effective and natural tyrosinase inhibitor via green technology is of great interest to the global food market due to food security and climate change issues. In this study, Syzygium aqueum (S. aqueum) leaves, which are known to be rich in phenolic compounds (PC), were chosen as a natural source of tyrosinase inhibitor, and the effect of the sustainable, supercritical fluid extraction (SFE) process was evaluated. Response surface methodology-assisted supercritical fluid extraction (RSM-assisted SFE) was utilized to optimize the PCs extracted from S. aqueum. The highest amount of PC was obtained at the optimum conditions (55 °C, 3350 psi, and 70 min). The IC50 (661.815 µg/mL) of the optimized extract was evaluated, and its antioxidant activity (96.8 %) was determined. Gas chromatography-mass spectrometry (GC-MS) results reveal that 2',6'-dihydroxy-4'-methoxychalcone (2,6-D4MC) (82.65 %) was the major PC in S. aqueum. Chemometric analysis indicated that 2,6-D4MC has similar chemical properties to the tyrosinase inhibitor control (kaempferol). The toxicity and physiochemical properties of the novel 2,6-D4MC from S. aqueum revealed that the 2,6-D4MC is safer than kaempferol as predicted via absorption, distribution, metabolism, and excretion (ADME) evaluation. Enzyme kinetic analysis shows that the type of inhibition of the optimized extract is non-competitive inhibition with Km = 1.55 mM and Vmax = 0.017 µM/s. High-performance liquid chromatography (HPLC) analysis shows the effectiveness of S. aqueum as a tyrosinase inhibitor. The mechanistic insight of the tyrosinase inhibition using 2,6-D4MC was successfully calculated using density functional theory (DFT) and molecular docking approaches. The findings could have a significant impact on food security development by devising a sustainable and effective tyrosinase inhibitor from waste by-products that is aligned with the United Nation's SDG 2, zero hunger.


Subject(s)
Chromatography, Supercritical Fluid , Syzygium , Monophenol Monooxygenase , Syzygium/chemistry , Chemometrics , Kaempferols , Chromatography, Supercritical Fluid/methods , Molecular Docking Simulation , Kinetics , Plant Extracts/chemistry
2.
Front Pharmacol ; 14: 1325227, 2023.
Article in English | MEDLINE | ID: mdl-38094882

ABSTRACT

Tuberculosis (TB), an infectious disease caused by multi-drug resistant Mycobacterium tuberculosis (Mtb), has been a global health concern. Mtb affects over a third of the world's population, causing two million deaths annually due to its dormancy and propensity to spread infection during this period. Resuscitation-promoting factor B (RpfB) plays a pivotal role in the growth of Mtb during dormant periods, making it a critical target for eliminating Mtb and curing TB. Gymnema sylvestre is a famous medicinal plant with several medicinal properties, including antimicrobial activity; however, the therapeutic potential of the various reported metabolites of this plant against Mtb has not yet been explored. The aim of this study was to explore the reported natural products of G. sylvestre against the RpfB of the Mtb. A total of 131 reported secondary metabolites of this plant were collected and virtually screened against the RpfB. We particularly targeted the Glu292 residue of RpfB as it is crucial for the catalysis of this protein. From our in-house library, 114 compounds showed a binding affinity higher than the standard drug. The binding stability of the top three lead compounds was further confirmed through MD simulation analysis. Drug likeness analyses indicated that the ten hits had zero violations of the Lipinski rule of five. In addition, analyses of pharmacokinetics, toxicity, and target prediction revealed that the top compounds are devoid of toxicity and do not affect human proteins. Additionally, they reflect multifaceted approach as anti-TB agents. Our selected hits not only exhibit molecular properties favoring physiological compatibility but also exhibit properties enhancing their potential efficacy as therapeutic candidates. The compounds investigated here are worthy of experimental validation for the discovery of novel treatments against TB. Further, this study also provides a promising avenue for research on the pharmacological potential of G. sylvestre.

3.
Int J Biol Macromol ; 165(Pt A): 1475-1481, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-33058972

ABSTRACT

Herein acid phosphatase isoenzyme was extracted from the C. murale seedlings. The purification was accomplished by chromatographic techniques and passing through DEAE-cellulose and Sephadex G-100 column. The specific activity of acid phosphatase 5.75 U/mg of protein was obtained with 66 purification fold 15.8% yield and molecular mass was 29 kDa with very faint bands corresponding to 18 kDa and 14 kDa. The maximal activity at pH 5.0 and 50 °C best illustrated by first order kinetics. When temperature was raised (55 °C to 75 °C), the deactivation rate constant was increased from 0.001 to 0.014 min-1, while half-life was decreased from 693 to 49 min-1. The results of activity collected at different temperature were then used to estimate, activation energy of hydrolysis reaction (Ea = 47.59 kJmol-1). A high Z-value (18.86 °C min-1) was obtained indicating a less sensitivity towards temperatures. The residual activity examinations were carried out from 55 °C to 75 °C and assessing the Deactivation Energy (Ed 116.39 kJmol-1), Enthalpy change (ΔH° 113.55kJmol-1), Entropy change (ΔS° 110.33kJmol-1) and change in Gibbs free energy (ΔG° 10.02 kJmol-1). Taken together, thermodynamic parameters confirm the high stability of enzyme and show potential commercial applicability.


Subject(s)
Acid Phosphatase/chemistry , Chenopodium/chemistry , Kinetics , Plant Extracts/chemistry , Acid Phosphatase/genetics , Entropy , Enzyme Stability/drug effects , Hydrogen-Ion Concentration , Molecular Weight , Plant Extracts/pharmacology , Seedlings/chemistry , Temperature , Thermodynamics
4.
Sci Rep ; 10(1): 9566, 2020 06 12.
Article in English | MEDLINE | ID: mdl-32533034

ABSTRACT

Lipid oxidation and microbial contamination are the major factors contributing to food deterioration. Food additives like antioxidants and antibacterials can prevent food spoilage by delaying oxidation and preventing the growth of bacteria. Artocarpus altilis leaves exhibited biological properties that suggested its use as a new source of natural antioxidant and antimicrobial. Supercritical fluid extraction (SFE) was used to optimize the extraction of bioactive compounds from the leaves using response surface methodology (yield and antioxidant activity). The optimum SFE conditions were 50.5 °C temperature, 3784 psi pressure and 52 min extraction time. Verification test results (Tukey's test) showed that no significant difference between the expected and experimental DPPH activity and yield value (99%) were found. Gas-chromatography -mass spectrometry (GC-MS) analysis revealed three major bioactive compounds existed in A. altilis extract. The extract demonstrated antioxidant and antibacterial properties with 2,3-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity, ferric reducing ability of plasma (FRAP), hydroxyl radical scavenging activity, tyrosinase mushrrom inhibition of 41.5%, 8.15 ± 1.31 (µg of ascorbic acid equivalents), 32%, 37% and inhibition zone diameter of 0.766 ± 0.06 cm (B. cereus) and 1.27 ± 0.12 cm (E. coli). Conductor like screening model for real solvents (COSMO RS) was performed to explain the extraction mechanism of the major bioactive compounds during SFE. Molecular electrostatic potential (MEP) shows the probability site of nucleophilic and electrophilic attack during bacterial inhibition. Based on molecular docking study, non-covalent interactions are the main interaction occurring between the major bioactive compounds and bacteria (antibacterial inhibition).


Subject(s)
Anti-Bacterial Agents/pharmacology , Antioxidants/pharmacology , Artocarpus/chemistry , Plant Extracts/pharmacology , Anti-Bacterial Agents/isolation & purification , Antioxidants/isolation & purification , Bacillus cereus/drug effects , Disk Diffusion Antimicrobial Tests , Escherichia coli/drug effects , Food Microbiology , Free Radical Scavengers/pharmacology , Gas Chromatography-Mass Spectrometry , Lipid Peroxidation/drug effects , Molecular Docking Simulation , Molecular Structure , Oxidation-Reduction , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Plant Leaves/chemistry , Solvents
5.
J Texture Stud ; 51(5): 810-829, 2020 10.
Article in English | MEDLINE | ID: mdl-32401337

ABSTRACT

Meat tenderness is one of the most important organoleptic properties in determining consumer acceptance in meat product marketability. Therefore, an effective meat tenderization method is sought after by exploring plant-derived proteolytic enzymes as meat tenderizer. In this study, a novel protease from Cashew was identified as a new alternative halal meat tenderizer. The extraction of cashew protease was optimized using response surface methodology (R2 = 0.9803) by varying pH, CaCl2 concentration, mixing time, and mass. pH 6.34, 7.92 mM CaCl2 concentration, 5.51 min mixing time, and 19.24 g sample mass were the optimal extraction conditions. There was no significant difference (n = 3; p < 0.05) between the calculated (6.302 units/ml) and experimental (6.493 ± 0.229 units/ml) protease activity. The ascending order of the effects was pH < mixing time < CaCl2 < sample mass. In meat tenderizing application, the meat samples treated with 9% (v/w) crude protease extract obtained the lowest shear force (1.38 ± 0.25 N) to cause deformation on the meat. An electrophoretic analysis showed that protein bands above ~49.8 kDa were completely degraded into protein bands below ~22.4 kDa. Scanning electron microscopy shows the disruption of the muscle fibers after being treated by the Cashew protease. The results of this study show the Cashew (Anacardium occidentale) crude extract can be used as an alternative of the animal and microbial protease as meat tenderizer and subsequently overcome the shortcoming of the halal industrial protease.


Subject(s)
Anacardium/embryology , Fruit/enzymology , Peptide Hydrolases/analysis , Plant Extracts/analysis , Drug Combinations , Enzyme Stability , Food Handling , Hydrogen-Ion Concentration , Meat , Papain , Regression Analysis , Research Design , Sodium, Dietary
SELECTION OF CITATIONS
SEARCH DETAIL