Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
J Neurosurg ; 136(1): 231-241, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34359039

ABSTRACT

OBJECTIVE: Deep brain stimulation (DBS) of the centromedian thalamic nucleus has been reportedly used to treat severe Tourette syndrome, yielding promising outcomes. However, it remains unclear how DBS electrode position and stimulation parameters modulate the specific area and related networks. The authors aimed to evaluate the relationships between the anatomical location of stimulation fields and clinical responses, including therapeutic and side effects. METHODS: The authors collected data from 8 patients with Tourette syndrome who were treated with DBS. The authors selected the active contact following threshold tests of acute side effects and gradually increased the stimulation intensity within the therapeutic window such that acute and chronic side effects could be avoided at each programming session. The patients were carefully interviewed, and stimulation-induced side effects were recorded. Clinical outcomes were evaluated using the Yale Global Tic Severity Scale, the Yale-Brown Obsessive-Compulsive Scale, and the Hamilton Depression Rating Scale. The DBS lead location was evaluated in the normalized brain space by using a 3D atlas. The volume of tissue activated was determined, and the associated normative connective analyses were performed to link the stimulation field with the therapeutic and side effects. RESULTS: The mean follow-up period was 10.9 ± 3.9 months. All clinical scales showed significant improvement. Whereas the volume of tissue activated associated with therapeutic effects covers the centromedian and ventrolateral nuclei and showed an association with motor networks, those associated with paresthesia and dizziness were associated with stimulation of the ventralis caudalis and red nucleus, respectively. Depressed mood was associated with the spread of stimulation current to the mediodorsal nucleus and showed an association with limbic networks. CONCLUSIONS: This study addresses the importance of accurate implantation of DBS electrodes for obtaining standardized clinical outcomes and suggests that meticulous programming with careful monitoring of clinical symptoms may improve outcomes.


Subject(s)
Deep Brain Stimulation/methods , Thalamus/anatomy & histology , Thalamus/surgery , Tourette Syndrome/pathology , Tourette Syndrome/surgery , Adolescent , Adult , Child , Child, Preschool , Deep Brain Stimulation/adverse effects , Depression/etiology , Dizziness/etiology , Female , Follow-Up Studies , Humans , Intralaminar Thalamic Nuclei/anatomy & histology , Intralaminar Thalamic Nuclei/diagnostic imaging , Intralaminar Thalamic Nuclei/surgery , Male , Middle Aged , Nerve Net/anatomy & histology , Neuroanatomy , Paresthesia/etiology , Postoperative Complications , Prospective Studies , Psychiatric Status Rating Scales , Red Nucleus/anatomy & histology , Red Nucleus/surgery , Treatment Outcome , Ventral Thalamic Nuclei/anatomy & histology , Ventral Thalamic Nuclei/diagnostic imaging , Ventral Thalamic Nuclei/surgery , Young Adult
2.
Mol Cell Neurosci ; 108: 103535, 2020 10.
Article in English | MEDLINE | ID: mdl-32758699

ABSTRACT

Epilepsy is among the most common neurological disorders, affecting approximately 50 million people worldwide. Importantly, epilepsy is genetically and etiologically heterogenous, but several epilepsy types exhibit similar clinical presentations. Epilepsy-associated genes are being identified. However, the molecular pathomechanisms remain largely unknown. Approximately one-third of epilepsy is refractory to multiple conventional anti-epileptic drugs (AEDs). Induced pluripotent stem cells (iPSCs) provide an excellent tool to study the pathomechanisms underlying epilepsy and to develop novel treatments. Indeed, disease-specific iPSCs have been established for several genetic epilepsies. In particular, the molecular mechanisms underlying certain developmental and epileptic encephalopathies, such as Dravet syndrome, have been revealed. Modeling epilepsy with iPSCs enables new drug development based on the elucidated pathomechanisms. This can also be used to evaluate conventional AEDs and drug repurposing. Furthermore, transplanting neuronal cells derived from iPSCs into the brain has great potential to treat refractory epilepsies. Recent advances in iPSC technology have enabled the generation of neuronal organoids, or "mini brains." These organoids demonstrate electrophysiological activities similar to those of the brain and have the potential for extensive epilepsy research opportunities. Thus, the application of iPSCs in epilepsy provides insight into novel treatments based on the molecular pathomechanisms of epilepsy. In this review, we comprehensively discuss the studies conducted on iPSCs established for genetic epilepsy or epilepsies without major structural dysmorphic features.


Subject(s)
Anticonvulsants/pharmacology , Epilepsy/metabolism , Induced Pluripotent Stem Cells/metabolism , Animals , Drug Evaluation, Preclinical/methods , Epilepsy/genetics , Humans , Induced Pluripotent Stem Cells/drug effects
3.
Epilepsia ; 57(7): 1027-35, 2016 07.
Article in English | MEDLINE | ID: mdl-27270488

ABSTRACT

On April 21, 2015, the first SCN8A Encephalopathy Research Group convened in Washington, DC, to assess current research into clinical and pathogenic features of the disorder and prepare an agenda for future research collaborations. The group comprised clinical and basic scientists and representatives of patient advocacy groups. SCN8A encephalopathy is a rare disorder caused by de novo missense mutations of the sodium channel gene SCN8A, which encodes the neuronal sodium channel Nav 1.6. Since the initial description in 2012, approximately 140 affected individuals have been reported in publications or by SCN8A family groups. As a result, an understanding of the severe impact of SCN8A mutations is beginning to emerge. Defining a genetic epilepsy syndrome goes beyond identification of molecular etiology. Topics discussed at this meeting included (1) comparison between mutations of SCN8A and the SCN1A mutations in Dravet syndrome, (2) biophysical properties of the Nav 1.6 channel, (3) electrophysiologic effects of patient mutations on channel properties, (4) cell and animal models of SCN8A encephalopathy, (5) drug screening strategies, (6) the phenotypic spectrum of SCN8A encephalopathy, and (7) efforts to develop a bioregistry. A panel discussion of gaps in bioregistry, biobanking, and clinical outcomes data was followed by a planning session for improved integration of clinical and basic science research. Although SCN8A encephalopathy was identified only recently, there has been rapid progress in functional analysis and phenotypic classification. The focus is now shifting from identification of the underlying molecular cause to the development of strategies for drug screening and prioritized patient care.


Subject(s)
Brain Diseases/genetics , Epilepsy/etiology , Epilepsy/genetics , NAV1.6 Voltage-Gated Sodium Channel/genetics , Symbiosis/genetics , Animals , Anticonvulsants/therapeutic use , Brain Diseases/complications , Brain Diseases/drug therapy , Disease Progression , Drug Evaluation, Preclinical , Epilepsies, Myoclonic/drug therapy , Epilepsies, Myoclonic/genetics , Epilepsy/drug therapy , Humans , Models, Molecular , NAV1.1 Voltage-Gated Sodium Channel/genetics , NAV1.6 Voltage-Gated Sodium Channel/metabolism , Phenotype
4.
Orphanet J Rare Dis ; 11(1): 55, 2016 05 04.
Article in English | MEDLINE | ID: mdl-27146299

ABSTRACT

BACKGROUND: Alternating hemiplegia of childhood is an intractable neurological disorder characterized by recurrent episodes of alternating hemiplegia accompanied by other paroxysmal symptoms. Recent research has identified mutations in the ATP1A3 gene as the underlying cause. Adenosine-5'-triphosphate has a vasodilatory effect, can enhance muscle strength and physical performance, and was hypothesized to improve the symptoms of paroxysmal hemiplegia. METHODS: A 7-year-old boy with alternating hemiplegia of childhood who was positive for a de novo ATP1A3 mutation was treated with adenosine- 5'- triphosphate supplementation orally as an innovative therapy for 2 years. Outcome was evaluated through the follow-up of improvement of hemiplegic episodes and psychomotor development. Side effects and safety were monitored in regularity. RESULTS: With the dosage of adenosine-5'-triphosphate administration increased, the patient showed significantly less frequency and shorter duration of hemiplegic episodes. Treatment with adenosine-5'-triphosphate was correlated with a marked amelioration of alternating hemiplegia of childhood episodes, and psychomotor development has improved. The maximum dose of oral administration of adenosine-5'-triphosphate reached 25 mg/kg per day. Adenosine-5'-triphosphate therapy was well tolerated without complaint of discomfort and side effects. CONCLUSIONS: The 2-year follow-up outcome of adenosine-5'-triphosphate therapy for alternating hemiplegia of childhood was successful.


Subject(s)
Adenosine Triphosphate/therapeutic use , Hemiplegia/drug therapy , Hemiplegia/genetics , Mutation/genetics , Sodium-Potassium-Exchanging ATPase/genetics , Child , Humans , Male , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL