ABSTRACT
The prevalence of chronic kidney disease (CKD) is in progress that causes kidney failure, leading to global problems. This manuscript investigated the nephroprotective effects of chicory (CLE) and/or artichoke (ALE) leaves extracts on carbon tetrachloride (CCl4 ) and gamma-irradiation (Rad)-induced chronic nephrotoxicity in rats. Rats were divided into 10 groups (10 animals/group): group 1: control, groups 2-7 rats were treated with CLE, ALE, CLE/ALE, CCl4 , Rad, and CCl4 /Rad, respectively. Groups 8 to 10, rats were intoxicated with CCl4 /Rad, and treated with CLE, ALE, and CLE/ALE extracts, respectively, for 4 weeks. The data demonstrated that CCl4 administration or Rad exposure induced high levels of urea and creatinine, with low levels of total protein and albumin in the serum. However, high levels of malondialdehyde (MDA), nitric oxide (NO), hydrogen peroxide (H2 O2 ), some pro-inflammatory markers such as interleukins (IL-1ß, IL-2, IL-6), TNF-α, NF-κB, the fibrotic marker; TGF-ß1, calcium, and copper, low contents of reduced glutathione (GSH), iron, and zinc, and suppression of the antioxidant enzymes' activity, superoxide dismutase (SOD), and catalase (CAT) were observed. In addition, the Wnt and ß-catenin protein expression ratios were up-regulated in the kidney tissues of the CCl4 , and Rad intoxicated animals. However, the combined treatment CCl4 /Rad augmented these measurements. On the other hand, CLE, ALE, and CLE/ALE treatments demonstrated nephroprotection in the kidney tissues of CCl4 /Rad intoxicated animals, in the order of CLE/ALE>ALE>CLE by ameliorating the investigated parameters. Kidney tissues' histopathological examinations confirmed these results. In conclusion, CLE and/or ALE demonstrated nephroprotection against CCl4 /Rad co-toxicity mediated by down-regulation of renal Wnt/ß-catenin protein expressions.
Subject(s)
Cichorium intybus , Cynara scolymus , Renal Insufficiency , Rats , Animals , Carbon Tetrachloride/toxicity , Oxidative Stress , Cynara scolymus/metabolism , Antioxidants/metabolism , Renal Insufficiency/metabolism , Renal Insufficiency/pathology , Plant Extracts/pharmacology , Catenins/metabolism , Catenins/pharmacology , LiverABSTRACT
This study aimed to evaluate the anticancer and radio-sensitizing efficacy of Zinc Oxide-Caffeic Acid Nanoparticles (ZnO-CA NPs). ZnO-CA NPs were formulated by the conjugation of Zinc Oxide nanoparticles (ZnO NPs) with caffeic acid (CA) that were characterized by Fourier Transform Infrared Spectra (FT-IR), X-ray Diffractometer (XRD), and Transmission Electron Microscopy (TEM). In vitro anticancer potential of ZnO-CA NPs was evaluated by assessing cell viability in the human breast (MCF-7) and hepatocellular (HepG2) carcinoma cell lines. In vivo anticancer and radio-sensitizing effects of ZnO-CA NPs in solid Ehrlich carcinoma-bearing mice (EC mice) were also assessed. Treatment of EC mice with ZnO-CA NPs resulted in a considerable decline in tumor size and weight, down-regulation of B-cell lymphoma 2 (BCL2) and nuclear factor kappa B (NF-κB) gene expressions, decreased vascular cell adhesion molecule 1 (VCAM-1) level, downregulation of phosphorylated-extracellular-regulated kinase 1 and 2 (p-ERK1/2) protein expression, DNA fragmentation and a recognizable peak at sub-G0/G1 indicating dead cells' population in cancer tissues. Combined treatment of ZnO-CA NPs with γ-irradiation improved these effects. In conclusion: ZnO-CA NPs exhibit in-vitro as well as in-vivo antitumor activity, which is augmented by exposure of mice to γ-irradiation. Further explorations are warranted previous to clinical application of ZnO-CA NPs.
Subject(s)
Carcinoma , Nanoparticles , Radiation-Sensitizing Agents , Zinc Oxide , Animals , Caffeic Acids , Female , Mice , Radiation-Sensitizing Agents/pharmacology , Spectroscopy, Fourier Transform Infrared , Zinc Oxide/pharmacologyABSTRACT
In the present study, a new series of 2-amino-pyran-3-carbonitrile derivatives of curcumin 2-7 have been synthesized via one-pot simple and efficient protocol, involving the reaction of curcumin 1 with substituted-benzylidene-malononitrile to modify the 1,3-diketone moiety. The structures of the synthesized compounds 2-7 were elucidated by microanalytical and spectral data, which were found consistent with the assigned structures. The nephroprotective mechanism of these new curcumin analogues was evaluated on the post-gamma-irradiation (7 Gy) - induced nephrotoxicity in rats. Activation of Nrf2 by these curcumin analogues is responsible for the amendment of the antioxidant status, impairment of NF-κB signal, thus attenuate the nephrotoxicity induced post-γ-irradiation exposure. 4-Chloro-phenyl curcumin analogue 7 showed the most potent activity. In conclusion, the results of the present study demonstrate a promising role of these new curcumin analogues to attenuate the early symptoms of nephrotoxicity induced by γ-irradiation in rats via activation of Nrf2 gene expression. These new curcumin analogues need further toxicological investigations to assess their therapeutic index.
Subject(s)
Curcumin/analogs & derivatives , Curcumin/therapeutic use , Gamma Rays , Kidney Diseases/drug therapy , Animals , Antioxidants/metabolism , Biomarkers/metabolism , Blotting, Western , Caspase 3/metabolism , Curcumin/chemistry , DNA Fragmentation/drug effects , Electrophoresis, Agar Gel , Gene Expression Regulation/drug effects , Inflammation/complications , Inflammation/pathology , Intercellular Adhesion Molecule-1/genetics , Intercellular Adhesion Molecule-1/metabolism , Kidney/drug effects , Kidney/enzymology , Kidney/pathology , Kidney Diseases/genetics , Kidney Diseases/pathology , Kidney Diseases/physiopathology , Kidney Function Tests , Male , NF-E2-Related Factor 2/metabolism , Nitric Oxide Synthase Type II/metabolism , Rats , Stereoisomerism , Trace Elements/metabolism , Vascular Cell Adhesion Molecule-1/genetics , Vascular Cell Adhesion Molecule-1/metabolismABSTRACT
The activity of flaxseed oil (FSO) on gamma-irradiation (7Gy) and/or carbon tetrachloride (CCl4) induced acute neurotoxicity in rats' brain was investigated. The results revealed a significant decrease (p<0.05) in superoxide dismutase (SOD), catalase (CAT), glutathione-peroxidase (GSH-Px) activities, reduced glutathione (GSH) and manganese (Mn) contents. Further, a significant elevation (p<0.05) in malondialdehyde, nitric oxide (NO), Tumor Necrosis Factor-alpha (TNF-α), Interleukin-1-beta (IL-1ß), Interleukin-6 (IL-6), transforming growth factor-beta-1 (TGF-ß1), iron (Fe), calcium (Ca), copper (Cu) and magnesium (Mg) levels were observed. Furthermore, the relative ratio of xanthine oxidase (XO) and inducible nitric-oxide synthase (iNOS) gene expression levels were elevated in the brain tissues of γ-irradiated and CCl4 intoxicated animals. Those effects were augmented due to the effect of CCl4-induced toxicity in γ-irradiated rats. The treatment of FSO displayed significant amendment of the studied parameters in the brain tissues of γ-irradiated and CCl4 intoxicated animals. FSO has a neuroprotective effect against CCl4-induced brain injury in gamma-irradiated rats. This effect is interrelated to the ability of FSO to scavenges the free radicals, enhances the antioxidant enzymes activity, increases GSH contents, down-regulates the inflammatory responses, ameliorates the iron, calcium, copper, magnesium, manganese levels and inhibiting the gene expression level of XO and iNOS in the brain tissues of intoxicated animals. In conclusion, this study demonstrated that the potent antioxidant and anti-inflammatory activities of FSO have the ability to improve the antioxidant status, suppress the inflammatory responses, and regulate the trace elements in the brain tissues of γ-irradiated, CCl4, and their combined effect in intoxicated animals. Consequently, FSO exhibited neuroprotective activity on γ-irradiated, CCl4, and their combined effect induced brain injury in rats.
Subject(s)
Brain/drug effects , Carbon Tetrachloride/toxicity , Gamma Rays , Linseed Oil/pharmacology , Oxidative Stress/drug effects , Animals , Antioxidants/metabolism , Brain/metabolism , Brain/radiation effects , Catalase/metabolism , Cytokines/analysis , Enzyme-Linked Immunosorbent Assay , Female , Glutathione/metabolism , Glutathione Peroxidase/metabolism , Linseed Oil/chemistry , Malondialdehyde/metabolism , Metals/analysis , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , Oxidative Stress/radiation effects , Rats , Rats, Wistar , Spectrophotometry, Atomic , Superoxide Dismutase/metabolism , Xanthine Oxidase/genetics , Xanthine Oxidase/metabolismABSTRACT
Carbon tetrachloride (CCl4) and ionizing radiation are well known environmental pollutants that generate free radicals and induce oxidative stress. The liver is the primary and major target organ responsible for the metabolism of drugs, toxic chemicals and affected by irradiation. This study investigated the effect of grape seed oil (GSO) on acute liver injury induced by carbon tetrachloride (CCl4) in γ-irradiated rats (7Gy). CCl4-intoxicated rats exhibited an elevation of ALT, AST activities, IL-6 and TNF-α level in the serum. Further, the levels of MDA, NO, NF-κB and the gene expression of CYP2E1, iNOS and Caspase-3 were increased, and SOD, CAT, GSH-Px, GST activities and GSH content were decreased. Furthermore, silent information regulator protein 1 (SIRT1) gene expression was markedly down-regulated. Additionally, alterations of the trace elements; copper, manganese, zinc and DNA fragmentation was observed in the hepatic tissues of the intoxicated group. These effects were augmented in CCl4-intoxicated-γ-irradiated rats. However, the administration of GSO ameliorated these parameters. GSO exhibit protective effects on CCl4 induced acute liver injury in γ-irradiated rats that could be attributed to its potent antioxidant, anti-inflammatory and anti-apoptotic activities. The induction of the antioxidant enzymes activities, down-regulation of the CYP2E1, iNOS, Caspase-3 and NF-κB expression, up-regulation of the trace elements concentration levels and activation of SIRT1 gene expression are responsible for the improvement of the antioxidant and anti-inflammatory status in the hepatic tissues and could be claimed to be the hepatoprotective mechanism of GSO.