Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
Aging Cell ; 17(6): e12830, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30192051

ABSTRACT

Plant extracts containing salicylates are probably the most ancient remedies to reduce fever and ease aches of all kind. Recently, it has been shown that salicylates activate adenosine monophosphate-activated kinase (AMPK), which is now considered as a promising target to slow down aging and prevent age-related diseases in humans. Beneficial effects of AMPK activation on lifespan have been discovered in the model organism Caenorhabditis elegans (C. elegans). Indeed, salicylic acid and acetylsalicylic acid extend lifespan in worms by activating AMPK and the forkhead transcription factor DAF-16/FOXO. Here, we investigated whether another salicylic acid derivative 5-octanoyl salicylic acid (C8-SA), developed as a controlled skin exfoliating ingredient, had similar properties using C. elegans as a model. We show that C8-SA increases lifespan of C. elegans and that a variety of pathways and genes are required for C8-SA-mediated lifespan extension. C8-SA activates AMPK and inhibits TOR both in nematodes and in primary human keratinocytes. We also show that C8-SA can induce both autophagy and the mitochondrial unfolded protein response (UPRmit ) in nematodes. This induction of both processes is fully required for lifespan extension in the worm. In addition, we found that the activation of autophagy by C8-SA fails to occur in worms with compromised UPRmit , suggesting a mechanistic link between these two processes. Mutants that are defective in the mitochondrial unfolded protein response exhibit constitutive high autophagy levels. Taken together, these data therefore suggest that C8-SA positively impacts longevity in worms through induction of autophagy and the UPRmit .


Subject(s)
Autophagy/drug effects , Caenorhabditis elegans/physiology , Longevity/drug effects , Mitochondria/metabolism , Salicylic Acid/pharmacology , Unfolded Protein Response/drug effects , Animals , Caenorhabditis elegans/drug effects , Caloric Restriction , Insulin/metabolism , Mitochondria/drug effects , Mutation/genetics , Signal Transduction/drug effects
2.
PLoS One ; 12(7): e0179813, 2017.
Article in English | MEDLINE | ID: mdl-28727758

ABSTRACT

The traditional Indian medicine, Ayurveda, provides insights and practical solutions towards a healthy life style. Rasayana is a branch of Ayurveda known for preserving and promoting health, enhancing the quality of life and delaying the aging process. In the traditional knowledge, the Rasayana herb, Chlorophytum borivilianum (C. borivilanum) is regarded as a general health promoting tonic that delays aging and increases lifespan, cognitive function and physical strength. Aging is a complex and multifactorial physiological phenomenon that manifests itself over a wide range of biological systems, tissues, and functions. Longevity is an obvious marker of physiological aging. Simple model systems such as the single-cell budding yeast Saccharomyces cerevisiae (S. cerevisiae) and the nematode, Caenorhabditis elegans (C. elegans) are widely used to study the aging process and longevity. Here, we show that a polysaccharide fraction obtained from C. borivilianum increases the lifespan of S. cerevisiae and C. elegans, using an automated screening platform (ChronoscreenTM). Chemical analysis of this extract revealed a low molecular weight polysaccharide of 1000 Da, predominantly comprising Glu1→6Glu linkage. This polysaccharide showed significant dose-dependent extension of the median lifespan of S. cerevisiae by up to 41% and of the median lifespan of C. elegans by up to 10%. Taking cue from these results and the traditionally described benefits of Rasayanas on skin rejuvenation, we tested in vitro the polysaccharide for potential skin benefits. In a keratinocyte culture, we observed that this polysaccharide increased cell proliferation significantly, and induced synthesis of hyaluronic acid (HA), a well-known extracellular matrix component. Furthermore, when added to culture medium of human reconstructed epidermis, we observed an enhanced production of epidermal markers, e.g. CD44 and HA that are otherwise diminished in aged skin. Together, these results suggest that in addition to life-span extension of S. cerevisiae and C. elegans, a polysaccharide from the Rasayana herb, C. borivilianum may have beneficial effects on skin aging parameters.


Subject(s)
Asparagaceae , Longevity/drug effects , Medicine, Ayurvedic , Plant Extracts/pharmacology , Polysaccharides/pharmacology , Aging , Animals , Caenorhabditis elegans/drug effects , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Keratinocytes/drug effects , Saccharomyces cerevisiae/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL