Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Nutrients ; 14(6)2022 Mar 18.
Article in English | MEDLINE | ID: mdl-35334941

ABSTRACT

A study was conducted to determine the effect of long-term supplementation with selenium and copper, administered at twice the level used in the standard diet of rats, on the content of selected elements in the femoral bones of healthy rats and rats with implanted LNCaP cancer cells. After an adaptation period, the animals were randomly divided into two experimental groups. The rats in the experimental group were implanted with prostate cancer cells. The rats in the control group were kept in the same conditions as those in the experimental group and fed the same diet, but without implanted cancer cells. The cancer cells (LNCaP) were intraperitoneally implanted in the amount of 1 × 106 (in PBS 0.4 mL) at the age of 90 days. The content of elements in the samples was determined by a quadrupole mass spectrometer with inductively coupled plasma ionization (ICP-MS). In the femoral bones of rats with implanted LNCaP cells, in the case of the standard diet and the copper-enriched diet, there was a marked decreasing trend in the content of the analysed elements relative to the control rats. This may indicate slow osteolysis taking place in the bone tissue. Contrasting results were obtained for the diet enriched with selenium; there was no significant reduction in the level of these elements, and there was even an increase in the concentrations of Fe and K in the bones of rats with implanted LNCaP cells. Particularly, numerous changes in the mineral composition of the bones were generated by enriching the diet with copper. The elements that most often underwent changes (losses) in the bones were cobalt, iron, manganese and molybdenum. The changes observed, most likely induced by the implantation of LNCaP cells, may indicate a disturbance of mineral homeostasis.


Subject(s)
Selenium , Animals , Male , Rats , Copper/analysis , Copper/pharmacology , Dietary Supplements , Femur , Manganese , Selenium/pharmacology
2.
Nutrients ; 13(1)2020 Dec 30.
Article in English | MEDLINE | ID: mdl-33396969

ABSTRACT

Prostate cancer (PCa) is the second most frequent cancer in men and the fifth most common cause of death worldwide, with an estimated 378,553 deaths in 2020. Prostate cancer shows a strong tendency to form metastatic foci in the bones. A number of interactions between cancer cells attacking bones and cells of the bone matrix lead to destruction of the bone and growth of the tumour. The last few decades have seen increased interest in the precise role of minerals in human health and disease. Tumour cells accumulate various minerals that promote their intensive growth. Bone, as a storehouse of elements, can be a valuable source of them for the growing tumour. There are also reports suggesting that the presence of some tumours, e.g., of the breast, can adversely affect bone structure even in the absence of metastasis to this organ. This paper presents the effect of chronic dietary intake of calcium, iron and zinc, administered in doses corresponding maximally to twice their level in a standard diet, on homeostasis of selected elements (Ca, K, Zn, Fe, Cu, Sr, Ni, Co, Mn and Mo) in the femoral bones of healthy rats and rats with implanted cancer cells of the LNCaP line. The experiment was conducted over 90 days. After the adaptation period, the animals were randomly divided into four dietary groups: standard diet and supplementation with Zn, Fe and Ca. Every dietary group was divided into experimental group (with implanted cancer cells) and control group (without implanted cancer cells). The cancer cells (LnCaP) were implanted intraperitoneally in the amount 1 × 106 to the rats at day 90 of their lifetime. Bone tissue was dried and treated with microwave-assisted mineral digestation. Total elemental content was quantified by ICP-MS. Student's t-test and Anova or Kruskal-Wallis tests were applied in order to compare treatment and dietary groups. In the case of most of the diets, especially the standard diet, the femoral bones of rats with implanted LNCaP cells showed a clear downward trend in the content of the elements tested, which may be indicative of slow osteolysis taking place in the bone tissue. In the group of rats receiving the standard diet, there were significant reductions in the content of Mo (by 83%), Ca (25%), Co (22%), Mn (13%), K (13%) and Sr (9%) in the bone tissue of rats with implanted LNCaP cells in comparison with the control group receiving the same diet but without LNCaP implantation. Supplementation of the rat diet with calcium, zinc and iron decreased the frequency of these changes relative to the standard diet, which may indicate that the diet had an inhibitory effect on bone resorption in conditions of LNCaP implantation. The principal component analysis (PCA) score plot confirms the pronounced effect of implanted LNCaP cells and the standard diet on bone composition. At the same time, supplementation with calcium, zinc and iron seems to improve bone composition. The microelements that most often underwent quantitative changes in the experimental conditions were cobalt, manganese and molybdenum.


Subject(s)
Bone Density/drug effects , Dietary Supplements , Femur/metabolism , Metals/pharmacology , Prostatic Neoplasms , Animals , Cell Line, Tumor , Femur/pathology , Humans , Male , Neoplasm Transplantation , Prostatic Neoplasms/diet therapy , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL