Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Exp Mol Med ; 53(5): 956-972, 2021 05.
Article in English | MEDLINE | ID: mdl-34035463

ABSTRACT

An ongoing pandemic of coronavirus disease 2019 (COVID-19) is now the greatest threat to global public health. Herbal medicines and their derived natural products have drawn much attention in the treatment of COVID-19, but the detailed mechanisms by which natural products inhibit SARS-CoV-2 have not been elucidated. Here, we show that platycodin D (PD), a triterpenoid saponin abundant in Platycodon grandiflorum (PG), a dietary and medicinal herb commonly used in East Asia, effectively blocks the two main SARS-CoV-2 infection routes via lysosome- and transmembrane protease serine 2 (TMPRSS2)-driven entry. Mechanistically, PD prevents host entry of SARS-CoV-2 by redistributing membrane cholesterol to prevent membrane fusion, which can be reinstated by treatment with a PD-encapsulating agent. Furthermore, the inhibitory effects of PD are recapitulated by the pharmacological inhibition or gene silencing of NPC1, which is mutated in patients with Niemann-Pick type C (NPC) displaying disrupted membrane cholesterol distribution. Finally, readily available local foods or herbal medicines containing PG root show similar inhibitory effects against SARS-CoV-2 infection. Our study proposes that PD is a potent natural product for preventing or treating COVID-19 and that briefly disrupting the distribution of membrane cholesterol is a potential novel therapeutic strategy for SARS-CoV-2 infection.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , SARS-CoV-2/drug effects , Saponins/pharmacology , Serine Endopeptidases/metabolism , Triterpenes/pharmacology , Virus Internalization/drug effects , Antiviral Agents/chemistry , COVID-19/metabolism , Cell Line , Humans , Lysosomes/drug effects , Lysosomes/metabolism , Models, Molecular , Platycodon/chemistry , SARS-CoV-2/physiology , Saponins/chemistry , Triterpenes/chemistry
2.
J Neurosci Res ; 87(2): 567-75, 2009 Feb.
Article in English | MEDLINE | ID: mdl-18752302

ABSTRACT

Previous studies have demonstrated that (-)-epigallocatechin gallate (EGCG), a green tea polyphenol, protects against ischemia and reperfusion-induced injury in many organ systems. Here, we test the hypothesis that part of EGCG's neuroprotective effects may involve a modulation of matrix metalloproteinases (MMPs) after cerebral ischemia. C57BL/6 mice were subjected to 20 min of transient global cerebral ischemia. EGCG (50 mg/kg) or vehicle (saline) was administered i.p. immediately after ischemia. Brains were examined 3 days after ischemia. The effects of EGCG on MMP (gelatinase) activity and neuronal damage in the hippocampus were assessed. Gelatin gel zymography showed induction of active forms of MMP-9 protein after transient global cerebral ischemia. In situ zymography showed that ischemic gelatinase activity occurred primarily in pyramidal neuronal areas after brain ischemia. Mice treated with EGCG showed significantly reduced gelatinase levels. Neuronal damage was evident in CA1 and CA2 pyramidal sectors, corresponding to TUNEL-positive signals. In EGCG-treated mice, delayed neuronal damage was significantly reduced compared with vehicle-treated mice. These results demonstrate that the green tea polyphenol EGCG suppresses MMP-9 activation and reduces the development of delayed neuronal death after transient global cerebral ischemia in mouse brain.


Subject(s)
Catechin/analogs & derivatives , Hippocampus/drug effects , Ischemic Attack, Transient/drug therapy , Matrix Metalloproteinase 9/drug effects , Neurons/drug effects , Neuroprotective Agents/pharmacology , Animals , Catechin/pharmacology , Electrophoresis, Polyacrylamide Gel , Enzyme Activation/drug effects , Flavonoids/chemistry , Flavonoids/pharmacology , Hippocampus/enzymology , Immunohistochemistry , In Situ Nick-End Labeling , Ischemic Attack, Transient/enzymology , Ischemic Attack, Transient/pathology , Male , Mice , Mice, Inbred C57BL , Neurons/enzymology , Neurons/pathology , Phenols/chemistry , Phenols/pharmacology , Polyphenols , Tea/chemistry , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL