Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Nucleic Acids Res ; 41(22): 10086-109, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23999091

ABSTRACT

Although many long non-coding RNAs (lncRNAs) have been discovered, their function and their association with RNAi factors in the nucleus have remained obscure. Here, we identify RNA transcripts that overlap the cyclooxygenase-2 (COX-2) promoter and contain two adjacent binding sites for an endogenous miRNA, miR-589. We find that miR-589 binds the promoter RNA and activates COX-2 transcription. In addition to miR-589, fully complementary duplex RNAs that target the COX-2 promoter transcript activate COX-2 transcription. Activation by small RNA requires RNAi factors argonaute-2 (AGO2) and GW182, but does not require AGO2-mediated cleavage of the promoter RNA. Instead, the promoter RNA functions as a scaffold. Binding of AGO2 protein/small RNA complexes to the promoter RNA triggers gene activation. Gene looping allows interactions between the promoters of COX-2 and phospholipase A2 (PLA2G4A), an adjacent pro-inflammatory pathway gene that produces arachidonic acid, the substrate for COX-2 protein. miR-589 and fully complementary small RNAs regulate both COX-2 and PLA2G4A gene expression, revealing an unexpected connection between key steps of the eicosanoid signaling pathway. The work demonstrates the potential for RNA to coordinate locus-dependent assembly of related genes to form functional operons through cis-looping.


Subject(s)
Cyclooxygenase 2/genetics , Group IV Phospholipases A2/genetics , Promoter Regions, Genetic , RNA, Small Untranslated/metabolism , Transcriptional Activation , Argonaute Proteins/metabolism , Autoantigens/metabolism , Cell Line, Tumor , Histones/metabolism , Humans , MicroRNAs/metabolism , RNA/biosynthesis , RNA, Antisense/biosynthesis , RNA-Binding Proteins/metabolism
2.
Nat Struct Mol Biol ; 15(8): 842-8, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18604220

ABSTRACT

Agents that activate expression of specific genes to probe cellular pathways or alleviate disease would go beyond existing approaches for controlling gene expression. Duplex RNAs complementary to promoter regions can repress or activate gene expression. The mechanism of these promoter-directed antigene RNAs (agRNAs) has been obscure. Other work has revealed noncoding transcripts that overlap mRNAs. The function of these noncoding transcripts is also not understood. Here we link these two sets of enigmatic results. We find that antisense transcripts are the target for agRNAs that activate or repress expression of progesterone receptor (PR). agRNAs recruit Argonaute proteins to PR antisense transcripts and shift localization of the heterogeneous nuclear ribonucleoprotein-k, RNA polymerase II and heterochromatin protein 1 gamma. Our data demonstrate that antisense transcripts have a central role in recognition of the PR promoter by both activating and inhibitory agRNAs.


Subject(s)
RNA, Small Interfering/chemistry , RNA/chemistry , Biotin/chemistry , Cell Line, Tumor , DNA, Complementary/metabolism , Gene Silencing , Genetic Techniques , Heterogeneous-Nuclear Ribonucleoprotein K/chemistry , Humans , Models, Genetic , Polymerase Chain Reaction , RNA/metabolism , RNA Polymerase II/metabolism , RNA, Antisense/chemistry , RNA, Small Interfering/metabolism , RNA, Untranslated/genetics , Receptors, Progesterone/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL