Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
J Anim Sci ; 100(9)2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35723288

ABSTRACT

Feeding 100% forage rape to sheep consistently lowers methane emissions per unit of intake (CH4/DMI) compared to those fed 100% ryegrass pasture. However, forage rape is usually supplemented with other feeds, which might impact the mitigation potential provided by forage rape. The objective of this study was to determine the effect of substituting ryegrass with graded levels of forage rape in the diet of lambs on methane emissions and rumen fermentation characteristics. Seventy wether lambs (n = 14/treatment) were fed a ryegrass-based pasture substituted with 0%, 25%, 50%, 75%, and 100% of forage rape (Brassica napus; FR0, FR25, FR50, FR75, and FR100, respectively) on a dry matter basis. Methane emissions and dry matter intake were measured for 48 h in respiration chambers and a rumen fluid sample was collected. CH4/DMI decreased (P < 0.01) with increasing forage rape inclusion in the diet so that sheep fed FR100 and FR75 emitted 34% and 11% less, respectively, than those fed FR0. CH4/DMI differences for lambs fed FR25 and FR50 were much smaller (<6%) relative to FR0. The pH of rumen fluid decreased (P < 0.01) at higher levels of forage rape inclusion in the diet (FR75 and FR100) compared to low levels of inclusion (FR0, F25, and F50). The proportion of ruminal acetate was least in FR100 (30%) followed by FR75 (10%), FR50 (8%), and FR25 (4%) compared with FR0 (P < 0.001). The proportion of propionate plus succinate was greater for FR100 (+40%), FR75 (+28%), and FR50 (+29%) compared with FR0, with FR25 intermediate (P < 0.001). The methanol concentration, and ethanol and propanol proportions in rumen fluid were greater for FR100 compared with any other treatment (P < 0.001). In conclusion, CH4/DMI decreased at high levels of forage rape inclusion in the diet and especially feeding FR100 was associated with a pronounced shift in rumen fermentation profile, with a significant presence of succinate, ethanol, propanol, methanol, valerate, and caproate.


The methane yield (g methane/kg dry matter intake) was 34% lower in sheep fed 100% forage rape and 11% lower in sheep fed 75% forage rape compared to sheep fed 100% ryegrass-based pasture. Sheep fed 25% and 50% forage rape as part of their diet had similar methane yields to sheep fed 100% ryegrass pasture. Sheep fed 100% forage rape had a ruminal fermentation profile with a smaller proportion of acetate and greater proportions of fermentation products like propionate, succinate, and valerate. Acetate formation is associated with hydrogen gas formation, which in turn is converted to methane in the rumen. Propionate, succinate, and valerate are alternatives to acetate plus hydrogen production and so fermentation shifts to them result in less methane formation.


Subject(s)
Brassica napus , Brassica rapa , Lolium , Acetates/metabolism , Animals , Caproates/metabolism , Diet/veterinary , Digestion , Ethanol/metabolism , Female , Fermentation , Lactation , Male , Methane/metabolism , Methanol/metabolism , Propanols , Propionates/metabolism , Rumen/metabolism , Sheep , Succinic Acid/metabolism , Valerates
2.
Appl Environ Microbiol ; 68(4): 2089-92, 2002 Apr.
Article in English | MEDLINE | ID: mdl-11916740

ABSTRACT

Propionate-forming bacteria seem to be abundant in anoxic rice paddy soil, but biogeochemical investigations show that propionate is not a correspondingly important intermediate in carbon flux in this system. Mixed cultures of Opitutus terrae strain PB90-1, a representative propionate-producing bacterium from rice paddy soil, and the hydrogenotrophic Methanospirillum hungatei strain SK maintained hydrogen partial pressures similar to those in the soil. The associated shift away from propionate formation observed in these cultures helps to reconcile the disparity between microbiological and biogeochemical studies.


Subject(s)
Bacteria/growth & development , Methanospirillum/growth & development , Oryza , Propionates/metabolism , Anaerobiosis , Bacteria/metabolism , Culture Media , Glucose/metabolism , Hydrogen/metabolism , Methanospirillum/metabolism , Pectins/metabolism , Soil Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL