ABSTRACT
Aflatoxin B1 (AFB1) is a mycotoxin highly toxic and carcinogenic to humans due to its potential to induce oxidative stress. The Beta-caryophyllene (BCP) have been highlighted for its broad spectrum of pharmacological effects. The present study aimed to investigate the beneficial effects of BCP against the susceptibility of hepatic and renal tissues to AFB1 toxicity, in biochemical parameters to assess organ function, tissue oxidation, and the immunocontent of oxidative and inflammatory proteins. Male Wistar rats was exposed to AFB1 (250 µg/kg, i.g.) and/or BCP (100 mg/kg, i.p.) for 14 successive days. It was found that exposure to AFB1 did not change the measured renal toxicity parameters. Also, AFB1 increased liver injury biomarkers (gamma glutamyl transferase and alkaline phosphatase) and reduced levels of non-enzymatic antioxidant defenses (ascorbic acid and non-protein thiol), however did not cause changes in the lipid peroxidation levels. Moreover, AFB1 interfered in oxidative pathway regulated by Kelch-like ECH-associated protein (Keap1)/nuclear factor (erythroid-derived 2)-like 2 (Nrf2), overacting Glutathione-S-Transferase (GST) activity. Lastly, a main effect of AFB1 on the total interleukin 1 beta (IL-1ß) was observed. Remarkably, the associated treatment of AFB1 + BCP improved altered liver parameters. In addition, BCP and AFB1 + BCP groups showed an increase in the levels of inhibitor of nuclear factor kappa-B kinase subunit beta (IKKß). Thus, these results indicated that BCP has potential protective effect against AFB1 induced hepatotoxicity.
Subject(s)
Aflatoxin B1/toxicity , Cytoprotection/drug effects , Liver/drug effects , Sesquiterpenes/pharmacology , Animals , Antioxidants/metabolism , Glutathione/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Lipid Peroxidation/drug effects , Liver/cytology , Liver/metabolism , Male , NF-E2-Related Factor 2/metabolism , Oxidative Stress/drug effects , Rats , Rats, WistarABSTRACT
m-Trifluoromethyl-diphenyl diselenide [(m-CF3-PhSe)2] is an organoselenium molecule that displays multiple pharmacological actions, including the antinociceptive effect. The current study investigated the (m-CF3-PhSe)2 restorative properties in models of acute and chronic inflammatory pain induced by complete Freund's adjuvant (CFA). Male adult Swiss mice received an intraplantar injection of CFA in the hindpaw and 24 h (acute) or 14 days (subchronic) later they were treated with a single or repeated (m-CF3-PhSe)2 schedule via intragastric route, respectively. The mechanical and thermal hypernociceptive behaviors were assessed by von Frey hair and hot plate tests. Samples of injected paw were collected to evaluate the tissue edema and myeloperoxidase (MPO) activity while cerebral contralateral cortex samples were used to determine the inflammatory proteins content (subchronic protocol). The acute (m-CF3-PhSe)2 administration (1 and 10 mg/kg) reduced the hypernociceptive behavior and both paw thickness and MPO activity induced by CFA injection. In the subchronic protocol, the repeated administration with a low effective dosage of (m-CF3-PhSe)2 reduced the mechanical and thermal hypernociception as well as restored the edema and MPO activity in paw samples. In addition, the repeated treatment schedule mitigated the increase in TNF-α, IL-1ß and COX-2 content in cerebral contralateral cortex induced by CFA injection. Collectively, these data showed that (m-CF3-PhSe)2 presents anti-inflammatory properties, which could be mediated by an interplay between peripheral and central mechanisms of action, reinforcing the potential biological properties of the compound.
Subject(s)
Inflammation/chemically induced , Organosilicon Compounds/pharmacology , Pain/chemically induced , Pain/drug therapy , Analgesics/administration & dosage , Analgesics/pharmacology , Animals , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Behavior, Animal/drug effects , Diclofenac/administration & dosage , Diclofenac/pharmacology , Freund's Adjuvant/toxicity , Inflammation/drug therapy , Male , Mice , Motor Activity/drug effects , Organosilicon Compounds/administration & dosage , Pain Measurement , Porphobilinogen Synthase/metabolism , Protein Carbonylation , Sulfhydryl Compounds/metabolismABSTRACT
The current study investigated the effect of organoselenium compound p,p'-methoxyl-diphenyl diselenide [(OMePhSe)2], free or incorporated into nanocapsules, on behavioral, biochemical and molecular alterations in an inflammatory pain model induced by complete Freund's adjuvant (CFA). Male Swiss mice received an intraplantar injection of CFA in the hindpaw and 24 h later they were treated via the intragastric route with a single (OMePhSe)2 administration, in its free form (dissolved in canola oil) or (OMePhSe)2 NC. The anti-hypernociceptive time- and dose-response curves were carried out using the von Frey hair test. Biochemical and histological parameters were determined in samples of injected paws and those of cerebral contralateral cortex were collected to determine immuno content of inflammatory proteins. Both (OMePhSe)2 forms reduced the hypernociception induced by CFA as well as attenuated the altered parameters of the inflammatory process in the paw (paw edema, myeloperoxidase and histological). However, the (OMePhSe)2 NC had a more prolonged anti-hypernociceptive action (7h) at a lower dose (10mg/kg) and superior effects on the paw alterations than the free compound form (4h and 25mg/kg). Furthermore, independent of the (OMePhSe)2 form, its administration decreased the MAPKs pathway activation (JNK;ERK1,2; p38) as well as iNOS, COX-2, Nf-κB and IL-1ß protein contents in the cerebral contralateral cortex that were increased by paw CFA injection. Therefore, (OMePhSe)2 NC had superior anti-inflammatory action, which possibly occurs by the inflammatory protein content modulation and also attenuates paw biochemical and histological inflammatory alterations induced by CFA injection.
Subject(s)
Anti-Inflammatory Agents/therapeutic use , Behavior, Animal/drug effects , Drug Carriers/chemistry , Nanocapsules/chemistry , Nociceptive Pain/drug therapy , Organoselenium Compounds/therapeutic use , Animals , Anti-Inflammatory Agents/administration & dosage , Disease Models, Animal , Dose-Response Relationship, Drug , Inflammation , Male , Mice , Nociceptive Pain/enzymology , Nociceptive Pain/immunology , Organoselenium Compounds/administration & dosage , Pain Measurement , Peroxidase/metabolism , Time FactorsABSTRACT
Diphenyl diselenide, (PhSe)2 , is an organoselenium compound with pharmacological actions mostly related to antioxidant and anti-inflammatory properties. The study investigated its antiviral and virucidal actions against herpes simplex virus 2 (HSV-2) infection in vitro and in a vaginal infection model in mice. The plaque reduction assay indicated that (PhSe)2 showed virucidal and antiviral actions reducing infectivity in 70.8% and 47%, respectively. The antiviral action of (PhSe)2 against HSV-2 vaginal infection was performed by infecting mice (10(5) PFU/ml(-1) ) at day 6. The treatment with (PhSe)2 (5 mg/kg/day, intragastric [i.g.]) followed 5 days before and for more 5 days after infection. The extravaginal lesion score was evaluated from days 6 to 10. At day 11, animals were killed, and histological evaluation, determination of viral load, and TNF-α and IFN-γ levels were performed in supernatants of homogenized vaginal tissue. The levels of reactive species (RS), protein carbonyl, non-protein thiols (NPSH), nitrate/nitrite (NOx), and malondialdehyde (MDA), and the activities of myeloperoxidase (MPO), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione reductase (GR) were determined. (PhSe)2 reduced the histological damage, extravaginal lesion scores, the viral load of vaginal tissue, and the activity of MPO, but increased the levels of TNF-α, IFN-γ. (PhSe)2 attenuated the increase of RS, MDA, NOx levels and the activity of GR caused by infection. (PhSe)2 also attenuated the reduction of NPSH content and the inhibition of CAT, SOD, and GPx activities. The antiviral action of (PhSe)2 against HSV-2 infection was related to its immunomodulatory, antioxidant, and anti-inflammatory properties. J. Cell. Biochem. 117: 1638-1648, 2016. © 2015 Wiley Periodicals, Inc.