Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
Tissue Cell ; 87: 102321, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38350206

ABSTRACT

The prevalent use of abamectin (ABM) has latterly raised safety attention as it has different toxicities to non-target living organisms. Citrus fruits are widely renowned for their nutritional and health-promoting qualities, and their peels are full of phenolic constituents. The purpose of the current study was to evaluate the modulatory effectiveness of Citrus reticulata peel extract (CPE) against abamectin-induced hepatotoxicity and oxidative injury. Rats were distributed into 4 groups as follows: control, CPE (400 mg/kg bw orally for 14 days), ABM (2 mg/kg bw for 5 days), and CPE + ABM at the doses mentioned above. Results revealed that GC-MS analysis of CPE has 19 identified components with significant total phenolic and flavonoid contents. Treatment with ABM in rats displayed significant variations in enzymatic and non-enzymatic antioxidants, oxidative stress markers (MDA, H2O2, PCC), liver and kidney function biomarkers, hematological parameters, lipids, and protein profile as well as histopathological abnormalities, inflammation and apoptosis (TNF-α, Caspase-3, NF-κB, and Bcl-2 genes) in rats' liver. Supplementation of CPE solo dramatically improved the antioxidant state and reduced oxidative stress. C. reticulata peel extract pretreatment alleviated ABM toxicity by modulating most of the tested parameters compared to the ABM group. Conclusively, CPE had potent antioxidant activity and could be used in the modulation of ABM hepatotoxicity presumably due to its antioxidant, anti-inflammatory, and gene-regulating capabilities.


Subject(s)
Chemical and Drug Induced Liver Injury , Citrus , Ivermectin/analogs & derivatives , Rats , Animals , Antioxidants/pharmacology , Antioxidants/metabolism , Hydrogen Peroxide/metabolism , Oxidative Stress , Liver/pathology , Citrus/metabolism , Plant Extracts/pharmacology , Chemical and Drug Induced Liver Injury/metabolism
2.
Toxics ; 11(6)2023 Jun 03.
Article in English | MEDLINE | ID: mdl-37368604

ABSTRACT

Fenpropathrin (FNP) is one of the commonly used insecticides in agriculture and domestically, leading to environmental and health problems. The goal of the current investigation was to determine how well pomegranate peel extract (PGPE) could prevent the testicular toxicity and oxidative stress induced by FNP. Four groups of male Wistar rats were randomly assigned: negative control (corn oil), PGPE (500 mg/kg BW), positive control (FNP; 15 mg/kg BW, 1/15 LD50), and PGPE + FNP. For four weeks, the rats received their doses daily and orally via gavage. The major phytochemical components (total phenolic, flavonoids, and tannins contents) detected in PGPE by GC-MS included ellagic acid, hydroxymethylfurfurole, guanosine, and pyrogallol with high total phenolic, flavonoids, and tannin contents. FNP-treated rats showed a marked elevation in testicular levels of thiobarbituric acid-reactive substances, hydrogen peroxide, and protein carbonyl content, as well as the activity of aminotransferases and phosphatases. Meanwhile. a significant decline in body weight, gonadosomatic index, glutathione, protein contents, enzymatic antioxidants, and hydroxysteroid dehydrogenase (3ß HSD, and 17ß HSD) activity was observed. In addition, significant alterations in testicular P53, Cas-3, Bcl-2, IL-ß, IL-10, testosterone, follicle-stimulating and luteinizing hormones, and sperm quality were detected. Furthermore, biochemical and molecular changes were corroborated testicular histological abnormalities. Moreover, PGPE-pretreated FNP-intoxicated rats demonstrated considerable improvement in the majority of the studied parameters, when compared to FNP-treated groups. Conclusively, PGPE provided a potent protective effect against the testicular toxicity caused by FNP, due to its antioxidant-active components.

3.
J Trace Elem Med Biol ; 62: 126631, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32763766

ABSTRACT

BACKGROUND: Aluminum (Al) has been reported to induce testicular injury via oxidative stress. Ananas comosus stem extract is an inexpensive byproduct waste rich in bromelain which is a group of sulfur-containing enzymes known for its biological activities and medicinal applications. So, the current investigation aims to evaluate the efficacy of bromelain in counteracting oxidative injury and testicular dysfunction stimulated by aluminum in rats. METHODS: Male adult Wistar rats were divided into four groups. The first group used as control, however, the second and third groups were received bromelain (250 mg/kg) and AlCl3 (34 mg/Kg, 1/25 LD50), and the fourth group supplemented with bromelain one hour before AlCl3 intoxication, respectively. Bromelain was administered daily while AlCl3 was given every other day by oral gavages for one month. RESULTS: Al intoxicated animals revealed an elevation in lipid peroxidation (TBARS and H2O2) level and lactate dehydrogenase (LDH) activity. However, reduced glutathione (GSH) and protein contents, antioxidant enzymes (SOD, CAT, GPx, GR, GST), phosphatases (ALP, AcP) and aminotransferases (AST, ALT) activities were significantly reduced. Additionally, considerable amendments in hormonal levels (testosterone, luteinizing and follicle-stimulating hormone) and sperm characteristics were spotted. Further, histological variations in the testes section were detected and this supports the biochemical observations. Otherwise, rats supplemented with bromelain alone diminished TBARS and H2O2 and augmented mostly other parameters. Furthermore, supplementation with bromelain before Al intoxication in rats exhibited worthy betterment in oxidative stress markers, hormones, and sperm quality compared to Al treated group. CONCLUSION: In conclusion, bromelain had a powerful protective role against Al-induced testicular dysfunction so, it represents a novel approach in metal toxicity processing.


Subject(s)
Ananas/chemistry , Bromelains/chemistry , Bromelains/pharmacology , Aluminum Chloride/chemistry , Animals , Antioxidants/chemistry , Glutathione/chemistry , Hormones/metabolism , Hydrogen Peroxide/chemistry , Male , Oxidative Stress/drug effects , Rats , Rats, Wistar
4.
Environ Toxicol ; 34(3): 330-339, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30578656

ABSTRACT

Oxidative stress and increased production of reactive oxygen species have been implicated in pesticides and heavy metals toxicity. The objective of this study was to investigate the efficacy of Turnera diffusa Willd (damiana) on counteracting fenitrothion (FNT) and/or potassium dichromate (CrVI)-induced testicular toxicity and oxidative injury in rats. FNT and/or CrVI intoxicated animals revealed a significant increase in thiobarbituric acid reactive substances and hydrogen peroxide levels. While, reduced glutathione and protein content, as well as antioxidant enzymes, phosphatases, and aminotransferases activities, were significantly decreased. In addition, significant changes in testosterone and follicle-stimulating hormone levels were detected. Furthermore, histological and immunohistochemical alterations were observed in rat testes and this supported the observed biochemical changes. On the other hand, rats treated with damiana alone decreased lipid peroxidation and increased most of the examined parameters. Moreover, damiana pretreatment to FNT and/or CrVI-intoxicated rats showed significant improvement in lipid peroxidation, enzyme activities, and hormones as compared with their respective treated groups. Conclusively, rats treated with both FNT and/or CrVI showed pronounced hazardous effect especially in their combination group in addition, Turnera diffusa had a potential protective role against FNT and/or CrVI induced testicular toxicity.


Subject(s)
Chromium/toxicity , Fenitrothion/toxicity , Plant Extracts/administration & dosage , Protective Agents/administration & dosage , Testis/drug effects , Turnera/chemistry , Animals , Antioxidants/metabolism , Humans , Hydrogen Peroxide/metabolism , Lipid Peroxidation/drug effects , Male , Oxidative Stress/drug effects , Potassium Dichromate/toxicity , Rats , Rats, Wistar , Testis/metabolism , Thiobarbituric Acid Reactive Substances/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL