Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Diabetologia ; 52(5): 941-51, 2009 May.
Article in English | MEDLINE | ID: mdl-19277604

ABSTRACT

AIMS/HYPOTHESIS: Fatty acids of marine origin, i.e. docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) act as hypolipidaemics, but they do not improve glycaemic control in obese and diabetic patients. Thiazolidinediones like rosiglitazone are specific activators of peroxisome proliferator-activated receptor gamma, which improve whole-body insulin sensitivity. We hypothesised that a combined treatment with a DHA and EPA concentrate (DHA/EPA) and rosiglitazone would correct, by complementary additive mechanisms, impairments of lipid and glucose homeostasis in obesity. METHODS: Male C57BL/6 mice were fed a corn oil-based high-fat diet. The effects of DHA/EPA (replacing 15% dietary lipids), rosiglitazone (10 mg/kg diet) or a combination of both on body weight, adiposity, metabolic markers and adiponectin in plasma, as well as on liver and muscle gene expression and metabolism were analysed. Euglycaemic-hyperinsulinaemic clamps were used to characterise the changes in insulin sensitivity. The effects of the treatments were also analysed in dietary obese mice with impaired glucose tolerance (IGT). RESULTS: DHA/EPA and rosiglitazone exerted additive effects in prevention of obesity, adipocyte hypertrophy, low-grade adipose tissue inflammation, dyslipidaemia and insulin resistance, while inducing adiponectin, suppressing hepatic lipogenesis and decreasing muscle ceramide concentration. The improvement in glucose tolerance reflected a synergistic stimulatory effect of the combined treatment on muscle glycogen synthesis and its sensitivity to insulin. The combination treatment also reversed dietary obesity, dyslipidaemia and IGT. CONCLUSIONS/INTERPRETATION: DHA/EPA and rosiglitazone can be used as complementary therapies to counteract dyslipidaemia and insulin resistance. The combination treatment may reduce dose requirements and hence the incidence of adverse side effects of thiazolidinedione therapy.


Subject(s)
Dietary Fats/pharmacology , Fatty Acids, Omega-3/pharmacology , Glycogen/biosynthesis , Insulin/physiology , Muscle, Skeletal/metabolism , Thiazolidinediones/pharmacology , Animals , Corn Oil/pharmacology , Docosahexaenoic Acids/pharmacology , Eicosapentaenoic Acid/pharmacology , Glucose Intolerance/metabolism , Hypoglycemic Agents/pharmacology , Male , Mice , Mice, Inbred C57BL , Muscle, Skeletal/drug effects , Rosiglitazone
2.
J Physiol Pharmacol ; 60(4): 135-40, 2009 Dec.
Article in English | MEDLINE | ID: mdl-20065507

ABSTRACT

UNLABELLED: In humans, antidiabetics thiazolidinediones (TZDs) upregulate stearoyl-CoA desaturase 1 (SCD1) gene in adipose tissue and increase plasma levels of SCD1 product palmitoleate, known to enhance muscle insulin sensitivity. Involvement of other tissues in the beneficial effects of TZDs on plasma lipid profile is unclear. In our previous study in mice, in which lipogenesis was suppressed by corn oil-based high-fat (cHF) diet, TZD rosiglitazone induced hepatic Scd1 expression, while liver triacylglycerol content increased, VLDL-triacylglycerol production decreased and plasma lipid profile and whole-body glycemic control improved. Aim of this study was to characterise contribution of liver to changes of plasma lipid profile in response to a 8-week-treatment by rosiglitazone in the cHF diet-fed mice. Rosiglitazone (10 mg/kg diet) upregulated expression of Scd1 in various tissues, with a stronger effect in liver as compared with adipose tissue or skeletal muscle. Rosiglitazone increased content of monounsaturated fatty acids in liver, adipose tissue and plasma, with palmitoleate being the most up-regulated fatty acid. In the liver, enhancement of SCD1 activity and specific enrichment of cholesteryl esters and phosphatidyl cholines with palmitoleate and vaccenate was found, while strong correlations between changes of various liver lipid fractions and total plasma lipids were observed (r=0.74-0.88). Insulin-stimulated glycogen synthesis was increased by rosiglitazone, with a stronger effect in muscle than in liver. CONCLUSIONS: changes in plasma lipid profile favouring monounsaturated fatty acids, mainly palmitoleate, due to the upregulation of Scd1 and enhancement of SCD1 activity in the liver, could be involved in the insulin-sensitizing effects of TZDs.


Subject(s)
Dietary Fats/administration & dosage , Fatty Acids, Monounsaturated/blood , Hypoglycemic Agents/pharmacology , Liver/drug effects , Thiazolidinediones/pharmacology , Adipose Tissue, White/chemistry , Adipose Tissue, White/metabolism , Animals , Corn Oil/administration & dosage , Fatty Acids/analysis , Fatty Acids/blood , Fatty Acids, Monounsaturated/analysis , Glucose Clamp Technique , Glycogen/metabolism , Insulin Resistance , Lipids/blood , Lipids/chemistry , Liver/chemistry , Liver/physiology , Mice , Muscle, Skeletal/metabolism , Oleic Acids/analysis , Oleic Acids/blood , Organ Specificity , Random Allocation , Rosiglitazone , Stearoyl-CoA Desaturase/genetics , Stearoyl-CoA Desaturase/metabolism , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL