Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Arch Toxicol ; 95(1): 321-336, 2021 01.
Article in English | MEDLINE | ID: mdl-32910239

ABSTRACT

Current in vitro genotoxicity tests can produce misleading positive results, indicating an inability to effectively predict a compound's subsequent carcinogenic potential in vivo. Such oversensitivity can incur unnecessary in vivo tests to further investigate positive in vitro results, supporting the need to improve in vitro tests to better inform risk assessment. It is increasingly acknowledged that more informative in vitro tests using multiple endpoints may support the correct identification of carcinogenic potential. The present study, therefore, employed a holistic, multiple-endpoint approach using low doses of selected carcinogens and non-carcinogens (0.001-770 µM) to assess whether these chemicals caused perturbations in molecular and cellular endpoints relating to the Hallmarks of Cancer. Endpoints included micronucleus induction, alterations in gene expression, cell cycle dynamics, cell morphology and bioenergetics in the human lymphoblastoid cell line TK6. Carcinogens ochratoxin A and oestradiol produced greater Integrated Signature of Carcinogenicity scores for the combined endpoints than the "misleading" in vitro positive compounds, quercetin, 2,4-dichlorophenol and quinacrine dihydrochloride and toxic non-carcinogens, caffeine, cycloheximide and phenformin HCl. This study provides compelling evidence that carcinogens can successfully be distinguished from non-carcinogens using a holistic in vitro test system. Avoidance of misleading in vitro outcomes could lead to the reduction and replacement of animals in carcinogenicity testing.


Subject(s)
Carcinogenicity Tests , Carcinogens/toxicity , Endpoint Determination , Research Design , Cell Cycle Checkpoints/drug effects , Cell Line , Cell Shape/drug effects , Energy Metabolism/drug effects , Gene Expression Regulation/drug effects , Humans , Micronuclei, Chromosome-Defective/chemically induced , Micronucleus Tests , Phosphorylation , Risk Assessment , Tumor Suppressor Protein p53/metabolism
2.
Arch Toxicol ; 92(2): 935-951, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29110037

ABSTRACT

Human exposure to carcinogens occurs via a plethora of environmental sources, with 70-90% of cancers caused by extrinsic factors. Aberrant phenotypes induced by such carcinogenic agents may provide universal biomarkers for cancer causation. Both current in vitro genotoxicity tests and the animal-testing paradigm in human cancer risk assessment fail to accurately represent and predict whether a chemical causes human carcinogenesis. The study aimed to establish whether the integrated analysis of multiple cellular endpoints related to the Hallmarks of Cancer could advance in vitro carcinogenicity assessment. Human lymphoblastoid cells (TK6, MCL-5) were treated for either 4 or 23 h with 8 known in vivo carcinogens, with doses up to 50% Relative Population Doubling (maximum 66.6 mM). The adverse effects of carcinogens on wide-ranging aspects of cellular health were quantified using several approaches; these included chromosome damage, cell signalling, cell morphology, cell-cycle dynamics and bioenergetic perturbations. Cell morphology and gene expression alterations proved particularly sensitive for environmental carcinogen identification. Composite scores for the carcinogens' adverse effects revealed that this approach could identify both DNA-reactive and non-DNA reactive carcinogens in vitro. The richer datasets generated proved that the holistic evaluation of integrated phenotypic alterations is valuable for effective in vitro risk assessment, while also supporting animal test replacement. Crucially, the study offers valuable insights into the mechanisms of human carcinogenesis resulting from exposure to chemicals that humans are likely to encounter in their environment. Such an understanding of cancer induction via environmental agents is essential for cancer prevention.


Subject(s)
Carcinogenicity Tests/methods , Carcinogens/toxicity , Lymphocytes/drug effects , Mutagens/toxicity , Cell Line , Humans , Micronucleus Tests , Oligonucleotide Array Sequence Analysis , RNA, Messenger/genetics , Tumor Suppressor Protein p53/metabolism
3.
Mutagenesis ; 31(1): 97-106, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26275419

ABSTRACT

Quantum dots (QD) have unique electronic and optical properties promoting biotechnological advances. However, our understanding of the toxicological structure-activity relationships remains limited. This study aimed to determine the biological impact of varying nanomaterial surface chemistry by assessing the interaction of QD with either a negative (carboxyl), neutral (hexadecylamine; HDA) or positive (amine) polymer coating with human lymphoblastoid TK6 cells. Following QD physico-chemical characterisation, cellular uptake was quantified by optical and electron microscopy. Cytotoxicity was evaluated and genotoxicity was characterised using the micronucleus assay (gross chromosomal damage) and the HPRT forward mutation assay (point mutagenicity). Cellular damage mechanisms were also explored, focusing on oxidative stress and mitochondrial damage. Cell uptake, cytotoxicity and genotoxicity were found to be dependent on QD surface chemistry. Carboxyl-QD demonstrated the smallest agglomerate size and greatest cellular uptake, which correlated with a dose dependent increase in cytotoxicity and genotoxicity. Amine-QD induced minimal cellular damage, while HDA-QD promoted substantial induction of cell death and genotoxicity. However, HDA-QD were not internalised by the cells and the damage they caused was most likely due to free cadmium release caused by QD dissolution. Oxidative stress and induced mitochondrial reactive oxygen species were only partially associated with cytotoxicity and genotoxicity induced by the QD, hence were not the only mechanisms of importance. Colloidal stability, nanoparticle (NP) surface chemistry, cellular uptake levels and the intrinsic characteristics of the NPs are therefore critical parameters impacting genotoxicity induced by QD.


Subject(s)
DNA Damage , Mutagens/pharmacology , Oxidative Stress , Quantum Dots/toxicity , Semiconductors , Cadmium/pharmacology , Cell Line , Humans , Lymphocytes/drug effects , Mutagenicity Tests , Quantum Dots/chemistry , Selenium/pharmacology , Structure-Activity Relationship , Surface Properties
4.
Plant Physiol ; 161(1): 547-55, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23129206

ABSTRACT

Arabidopsis (Arabidopsis thaliana) UV RESISTANCE LOCUS8 (UVR8) is a photoreceptor that specifically mediates photomorphogenic responses to ultraviolet (UV)-B in plants. UV-B photoreception induces the conversion of the UVR8 dimer into a monomer that interacts with the CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1) protein to regulate gene expression. However, it is not known how the dimeric photoreceptor is regenerated in plants. Here, we show, by using inhibitors of protein synthesis and degradation via the proteasome, that the UVR8 dimer is not regenerated by rapid de novo synthesis following destruction of the monomer. Rather, regeneration occurs by reversion from the monomer to the dimer. However, regeneration of dimeric UVR8 in darkness following UV-B exposure occurs much more rapidly in vivo than in vitro with illuminated plant extracts or purified UVR8, indicating that rapid regeneration requires intact cells. Rapid dimer regeneration in vivo requires protein synthesis, the presence of a carboxyl-terminal 27-amino acid region of UVR8, and the presence of COP1, which is known to interact with the carboxyl-terminal region. However, none of these factors can account fully for the difference in regeneration kinetics in vivo and in vitro, indicating that additional proteins or processes are involved in UVR8 dimer regeneration in vivo.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/radiation effects , Chromosomal Proteins, Non-Histone/metabolism , Photoreceptors, Plant/metabolism , Protein Biosynthesis , Ultraviolet Rays , Acyltransferases/metabolism , Arabidopsis/drug effects , Arabidopsis/metabolism , Cycloheximide/pharmacology , Darkness , Plant Cells/drug effects , Plant Cells/metabolism , Plant Extracts/metabolism , Proteasome Endopeptidase Complex/drug effects , Proteasome Endopeptidase Complex/metabolism , Protein Interaction Mapping , Protein Multimerization , Proteolysis , Ubiquitin-Protein Ligases/metabolism
5.
Anal Chem ; 84(13): 5535-41, 2012 Jul 03.
Article in English | MEDLINE | ID: mdl-22686244

ABSTRACT

Fluorescence anisotropy (FA) is a reliable and excellent choice for fluorescence sensing. One of the key factors influencing the FA value for any molecule is the molar mass of the molecule being measured. As a result, the FA method with functional nucleic acid aptamers has been limited to macromolecules such as proteins and is generally not applicable for the analysis of small molecules because their molecular masses are relatively too small to produce observable FA value changes. We report here a molecular mass amplifying strategy to construct anisotropy aptamer probes for small molecules. The probe is designed in such a way that only when a target molecule binds to the probe does it activate its binding ability to an anisotropy amplifier (a high molecular mass molecule such as protein), thus significantly increasing the molecular mass and FA value of the probe/target complex. Specifically, a mass amplifying probe (MAP) consists of a targeting aptamer domain against a target molecule and molecular mass amplifying aptamer domain for the amplifier protein. The probe is initially rendered inactive by a small blocking strand partially complementary to both target aptamer and amplifier protein aptamer so that the mass amplifying aptamer domain would not bind to the amplifier protein unless the probe has been activated by the target. In this way, we prepared two probes that constitute a target (ATP and cocaine respectively) aptamer, a thrombin (as the mass amplifier) aptamer, and a fluorophore. Both probes worked well against their corresponding small molecule targets, and the detection limits for ATP and cocaine were 0.5 µM and 0.8 µM, respectively. More importantly, because FA is less affected by environmental interferences, ATP in cell media and cocaine in urine were directly detected without any tedious sample pretreatment. Our results established that our molecular mass amplifying strategy can be used to design aptamer probes for rapid, sensitive, and selective detection of small molecules by means of FA in complex biological samples.


Subject(s)
Adenosine Triphosphate/analysis , Aptamers, Nucleotide/chemistry , Cocaine/analysis , Fluorescence Polarization/methods , Fluorescent Dyes/chemistry , Aptamers, Nucleotide/metabolism , Base Sequence , Binding Sites , Humans , Limit of Detection , Models, Molecular , Protein Binding , Thrombin/metabolism
6.
Mutat Res ; 648(1-2): 9-14, 2008 Dec 15.
Article in English | MEDLINE | ID: mdl-18992265

ABSTRACT

The alkylating agents methyl methanesulphonate (MMS) and ethyl methanesulphonate (EMS) have non-linear dose-response curves, with a no-observed effect level (NOEL) and a lowest observed effect level (LOEL) for both gross chromosomal damage and mutagenicity. However, the biological mechanism responsible for the NOEL has yet to be identified. A strong candidate is DNA repair as it may be able to efficiently remove alkyl adducts at low doses resulting in a NOEL, but at higher doses fails to fully remove all lesions due to saturation of enzymatic activity resulting in a LOEL and subsequent linear increases in mutagenicity. We therefore assessed the transcriptional status of N-methylpurine-DNA glycoslase (MPG) and O(6)-methylguanine DNA methyltransferase (MGMT), which represent the first line of defence following exposure to alkylating agents through the respective enzymatic removal of N7-alkylG and O(6)-alkylG. The relative MPG and MGMT gene expression profiles were assessed by real-time RT-PCR following exposure to 0-2 microg/ml MMS for 1-24h. MPG expression remained fairly steady, but in contrast significant up-regulation of MGMT was observed when cells were treated with 0.5 and 1.0 microg/ml MMS for 4h (2.5- and 6.5-fold increases respectively). These doses lie within the NOEL for MMS mutagenicity (LOEL is 1.25 microg/ml), thus this boost in MGMT expression at low doses may be responsible for efficiently repairing O(6)methylG lesions and creating the non-linear response for mutations. However, as the LOEL for MMS clastogenicity is 0.85 microg/ml, O(6)-alkylG is unlikely to be responsible for the clastogenicity observed at these concentrations. Consequently, at low doses N7-methylG is possibly the predominant cause of MMS clastogenicity, while O(6)-methylG is more likely to be responsible for MMS mutagenicity, with MGMT up-regulation playing a key role in removal of O(6)-alkylG lesions before they are fixed as permanent point mutations, resulting in non-linear dose-responses for direct acting genotoxins.


Subject(s)
DNA Modification Methylases/genetics , DNA Repair Enzymes/genetics , Methyl Methanesulfonate/toxicity , Tumor Suppressor Proteins/genetics , Up-Regulation/drug effects , Cells, Cultured , DNA Adducts/analysis , DNA Glycosylases/genetics , DNA Modification Methylases/metabolism , DNA Repair Enzymes/metabolism , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Gene Expression Regulation, Enzymologic/drug effects , Genes, p53/drug effects , Humans , No-Observed-Adverse-Effect Level , Tumor Suppressor Proteins/metabolism
7.
Carcinogenesis ; 28(1): 136-42, 2007 Jan.
Article in English | MEDLINE | ID: mdl-16905748

ABSTRACT

Bile acids are often refluxed into the lower oesophagus and are candidate carcinogens in the development of oesophageal adenocarcinoma. We show here that the secondary bile acid, deoxycholic acid (DCA), is the only one of the commonly refluxed bile acids tested here, to show genotoxicity, in terms of chromosome damage and mutation induction in the human p53 gene. This genotoxicity was apparent at both neutral and acidic pH, whilst there was a considerable increase in bile-induced toxicity at acidic pH. The higher levels of cell death and low cell survival rates at acidic pH may imply that acid bile exposure is toxic rather than carcinogenic, as dead cells do not seed cancer development. We also show that DCA (at neutral and acid pH) induced the release of reactive oxygen species (ROS) within the cytoplasm of exposed cells. We further demonstrate that the genotoxicity of DCA is ROS mediated, as micronucleus induction was significantly reduced when cells were treated with DCA + the anti-oxidant vitamin C. In conclusion, we show that DCA, is an effective genotoxin at both neutral and acidic pH. As bile acids like DCA can induce DNA damage at neutral pH, suppressing the acidity of the refluxate will not completely remove its carcinogenic potential. The genotoxicity of DCA is however, ROS dependent, hence anti-oxidant supplementation, in addition to acid suppression may block DCA driven carcinogenesis in Barrett's patients.


Subject(s)
Antioxidants/therapeutic use , Barrett Esophagus/metabolism , DNA Damage/drug effects , Deoxycholic Acid/toxicity , Detergents/toxicity , Reactive Oxygen Species/metabolism , Adenocarcinoma/drug therapy , Adenocarcinoma/metabolism , Ascorbic Acid/therapeutic use , Barrett Esophagus/drug therapy , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/metabolism , Cell Survival/drug effects , Esophageal Neoplasms/drug therapy , Esophageal Neoplasms/metabolism , Humans , Hydrogen-Ion Concentration , Micronucleus Tests , Tumor Cells, Cultured , Tumor Suppressor Protein p53
SELECTION OF CITATIONS
SEARCH DETAIL