Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Publication year range
1.
Eur J Med Chem ; 151: 186-198, 2018 May 10.
Article in English | MEDLINE | ID: mdl-29614416

ABSTRACT

Repositioning of the antipsychotic drug trifluoperazine for treatment of glioblastoma, an aggressive brain tumor, has been previously suggested. However, trifluoperazine did not increase the survival time in mice models of glioblastoma. In attempt to identify an effective trifluoperazine analog, fourteen compounds have been synthesized and biologically in vitro and in vivo assessed. Using MTT assay, compounds 3dc and 3dd elicited 4-5 times more potent inhibitory activity than trifluoperazine with IC50 = 2.3 and 2.2 µM against U87MG glioblastoma cells, as well as, IC50 = 2.2 and 2.1 µM against GBL28 human glioblastoma patient derived primary cells, respectively. Furthermore, they have shown a reasonable selectivity for glioblastoma cells over NSC normal neural cell. In vivo evaluation of analog 3dc confirmed its advantageous effect on reduction of tumor size and increasing the survival time in brain xenograft mouse model of glioblastoma. Molecular modeling simulation provided a reasonable explanation for the observed variation in the capability of the synthesized analogs to increase the intracellular Ca2+ levels. In summary, this study presents compound 3dc as a proposed new tool for the adjuvant chemotherapy of glioblastoma.


Subject(s)
Antineoplastic Agents/therapeutic use , Antipsychotic Agents/therapeutic use , Brain Neoplasms/drug therapy , Glioblastoma/drug therapy , Trifluoperazine/therapeutic use , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antipsychotic Agents/chemistry , Antipsychotic Agents/pharmacology , Brain/drug effects , Brain/metabolism , Brain/pathology , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Calcium/metabolism , Cell Line, Tumor , Drug Repositioning , Glioblastoma/metabolism , Glioblastoma/pathology , Humans , Mice , Molecular Docking Simulation , Trifluoperazine/analogs & derivatives , Trifluoperazine/pharmacology , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL