Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Exp Mol Med ; 50(4): 1-11, 2018 04 06.
Article in English | MEDLINE | ID: mdl-29622788

ABSTRACT

The myocardium in hypertensive heart exhibits decreased fatty acid utilization and contractile dysfunction, leading to cardiac failure. However, the causal relationship between metabolic remodeling and cardiomyocyte contractility remains unestablished. Transglutaminase 2 (TG2) has been known to promote ATP production through the regulation of mitochondrial function. In this study, we investigated the involvement of TG2 in cardiomyocyte contraction under fatty acid supplementation. Using TG2 inhibitor and TG2-deficient mice, we demonstrated that fatty acid supplementation activated TG2 and increased ATP level and contractility of cardiac myocyte from the normal heart. By contrast, in cardiac myocytes from angiotensin-II-treated rats and mice, the effects of fatty acid supplementation on TG2 activity, ATP level, and myocyte contraction were abolished. We found that TG2 was inhibited by S-nitrosylation and its level increased in hypertensive myocytes. Treatment with inhibitor for neuronal NOS restored fatty acid-induced increase of TG2 activity and myocyte contraction. Moreover, intracellular Ca2+ levels were increased by fatty acid supplementation in both normal and hypertensive myocytes, showing that S-nitrosylation of TG2 but not alteration of intracellular Ca2+ levels is responsible for contractile dysfunction. These results indicate that TG2 plays a critical role in the regulation of myocyte contractility by promoting fatty acid metabolism and provide a novel target for preventing contractile dysfunction in heart with high workload.


Subject(s)
Fatty Acids/metabolism , GTP-Binding Proteins/metabolism , Myocardial Contraction , Myocytes, Cardiac/metabolism , Transglutaminases/metabolism , Adenosine Triphosphate/metabolism , Animals , Biomarkers , Calcium/metabolism , Hypertension/metabolism , Hypertension/physiopathology , Male , Membrane Potential, Mitochondrial , Mice , Mice, Knockout , Protein Glutamine gamma Glutamyltransferase 2 , Rats
2.
Biochim Biophys Acta ; 1853(3): 619-31, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25549939

ABSTRACT

Cystamine and its reduced form cysteamine showed protective effects in various models of neurodegenerative disease, including Huntington's disease and Parkinson's disease. Other lines of evidence demonstrated the cytotoxic effect of cysteamine on duodenal mucosa leading to ulcer development. However, the mechanism for cystamine cytotoxicity remains poorly understood. Here, we report a new pathway in which cystamine induces apoptosis by targeting apoptosis-inducing factor (AIF). By screening of various cell lines, we observed that cystamine and cysteamine induce cell death in a cell type-specific manner. Comparison between cystamine-sensitive and cystamine-resistant cell lines revealed that cystamine cytotoxicity is not associated with unfolded protein response, reactive oxygen species generation and transglutaminase or caspase activity; rather, it is associated with the ability of cystamine to trigger AIF nuclear translocation. In cystamine-sensitive cells, cystamine suppresses the levels of intracellular glutathione by inhibiting γ-glutamylcysteine synthetase expression that triggers AIF translocation. Conversely, glutathione supplementation completely prevents cystamine-induced AIF translocation and apoptosis. In rats, cysteamine administration induces glutathione depletion and AIF translocation leading to apoptosis of duodenal epithelium. These results indicate that AIF translocation through glutathione depletion is the molecular mechanism of cystamine toxicity, and provide important implications for cystamine in the neurodegenerative disease therapeutics as well as in the regulation of AIF-mediated cell death.


Subject(s)
Apoptosis Inducing Factor/physiology , Apoptosis/drug effects , Cystamine/pharmacology , Glutathione/metabolism , Animals , Apoptosis/genetics , Duodenal Ulcer/metabolism , Duodenal Ulcer/pathology , Female , HeLa Cells , Humans , MCF-7 Cells , Rats , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism , Tumor Cells, Cultured , Up-Regulation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL