Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 30(58): 121487-121500, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37950785

ABSTRACT

Due to food borne pathogen, maintaining the viability of fresh fruits and vegetable is a great concern. Several strategies including microbial and plant-based formulations to reduce their infection and maintain quality of the fresh food are in practice. Currently, Bacillus has gained significant traction as a biocontrol agent for regulating diseases affecting a variety of agricultural and horticultural crops. Food-grade citric acid and plant growth-promoting rhizobacteria (PGPR) were used as antimicrobial agent, MIC results showed that PGPR (14.87 mm) and CA (20.25 mm) exhibited notable antimicrobial activity against E. coli. Lettuce treated with PGPR showed reduction in E. coli contamination, E. coli was detected at 3.30, 3.68 in control, and 2.7 log CFU/g in random root injury lettuce inoculated with PGPR KACC 21110 respectively. Random root injury showed a trend toward increasing E. coli internalization. The strains exhibited resistance to multiple antibiotics, including Imipenem, tetracycline, ampicillin, cefotaxime, cefoxitin, and ceftriaxone. Comprehensive data analysis revealed the presence of ten putative bacteriocin or bacteriocin-like gene clusters. The structure of lipopeptide homologs was characterized by using QTOF-MS/MS. The mass ion peaks attributed to surfactin homologs, surfactin A ion at m/z 1008.66, surfactin B, C at m/z 1022.67 and 1036.69. In addition to surfactin, a polyketide oxydifficidin and lipopeptide NO were extracted and detected from the extract of B. velezensis. Both isolates are key biocontrol agents and have significant potential in combating foodborne pathogens and can be utilized to explore novel antibacterial products for preventing pathogens in fresh produce.


Subject(s)
Bacillus , Bacteriocins , Escherichia coli , Hydroponics , Tandem Mass Spectrometry , Bacillus/chemistry , Anti-Bacterial Agents/pharmacology , Genomics , Lipopeptides
2.
Int J Food Microbiol ; 397: 110221, 2023 Jul 16.
Article in English | MEDLINE | ID: mdl-37126887

ABSTRACT

Root vegetables, which are in close contact with soil, are particularly vulnerable to soil contamination or decay as they can be contaminated from multiple sources, including primary production and processing. This study investigated effective washing conditions to reduce the microbial contamination of potatoes by using soaking and shaking in the washing process. The reduction of Escherichia coli, Listeria monocytogenes, and Murine norovirus 1 (MNV-1) in four washing processes (soaking only, shaking only, combined soaking-shaking I, and combined soaking-shaking I-shaking II) were compared. The numbers of E. coli and L. monocytogenes decreased by 0.55 and 0.49 log CFU/g after shaking only, 1.96 and 1.80 log CFU/g after soaking, 2.07 and 1.67 log CFU/g after soaking-shaking I, and 2.42 and 1.90 log CFU/g after soaking-shaking I-shaking II, respectively. The combined process reduced the microbial contamination more efficiently than shaking only. The reduction of E. coli in the washing process was higher than that of L. monocytogenes by approximately 0.5 logs. MNV-1 showed a reduction in the soaking and shaking steps by 1.34 and 1.98 log GC/100 g, with no significant reduction observed after the combination process. A combined process of soaking-shaking I-shaking II was effective to eliminate E. coli, L. monocytogenes, and MNV-1 from potatoes during the handling and washing process.


Subject(s)
Escherichia coli O157 , Listeria monocytogenes , Norovirus , Solanum tuberosum , Animals , Mice , Food Microbiology , Food Handling , Colony Count, Microbial
SELECTION OF CITATIONS
SEARCH DETAIL