Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Phytother Res ; 37(11): 5300-5314, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37526050

ABSTRACT

Pyroptosis plays an important role in inflammatory diseases such as viral hepatitis and atherosclerosis. Apigenin exhibits various bioactivities, particularly anti-inflammation, but its effect on pyroptosis remains unclear. The aim of this study is to investigate the effect of apigenin on pyroptosis and explore its potential against inflammatory diseases. THP-1 macrophages treated by lipopolysaccharides/adenosine 5'-triphosphate were used as the in vitro pyroptosis model. Western blot was used to detect the expression of NLRP3 inflammasome components and key regulators. Immunofluorescence was used to observe ROS production and intracellular location of p65. The potential of apigenin against inflammatory diseases was evaluated using atherosclerotic mice. Plaque progression was observed by pathological staining. Immunofluorescence was used to observe the expression of NLRP3 inflammasome components in plaques. The results showed that apigenin inhibited NLRP3 inflammasome activation. Apigenin reduced ROS overproduction and inhibited p65 nuclear translocation. Additionally, apigenin decreased the expression of NLRP3 inflammasome components in the plaque. Plaque progression was inhibited by apigenin. In conclusion, apigenin exhibited a preventive effect on macrophage pyroptosis by reducing oxidative stress and inhibiting the NF-κB pathway. Apigenin may alleviate atherosclerosis at least partially by inhibiting macrophage pyroptosis. These findings suggest apigenin to be a promising therapeutic agent for inflammatory diseases.


Subject(s)
Atherosclerosis , NF-kappa B , Mice , Animals , NF-kappa B/metabolism , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pyroptosis/physiology , Apigenin/pharmacology , Reactive Oxygen Species/metabolism , Signal Transduction , Oxidative Stress/physiology , Macrophages , Atherosclerosis/drug therapy , Atherosclerosis/metabolism
2.
Front Plant Sci ; 7: 637, 2016.
Article in English | MEDLINE | ID: mdl-27242839

ABSTRACT

The perennial and evergreen twining vine, Lonicera japonica is an important herbal medicine with great economic value. However, gene expression information for flowers and leaves of L. japonica remains elusive, which greatly impedes functional genomics research on this species. In this study, transcriptome profiles from leaves and flowers of L. japonica were examined using next-generation sequencing technology. A total of 239.41 million clean reads were used for de novo assembly with Trinity software, which generated 150,523 unigenes with N50 containing 947 bp. All the unigenes were annotated using Nr, SwissProt, COGs (Clusters of Orthologous Groups), GO (Gene Ontology), and KEGG (Kyoto Encyclopedia of Genes and Genomes) databases. A total of 35,327 differentially expressed genes (DEGs, P ≤ 0.05) between leaves and flowers were detected. Among them, a total of 6602 DEGs were assigned with important biological processes including "Metabolic process," "Response to stimulus," "Cellular process," and etc. KEGG analysis showed that three possible enzymes involved in the biosynthesis of chlorogenic acid were up-regulated in flowers. Furthermore, the TF-based regulation network in L. japonica identified three differentially expressed transcription factors between leaves and flowers, suggesting distinct regulatory roles in L. japonica. Taken together, this study has provided a global picture of differential gene expression patterns between leaves and flowers in L japonica, providing a useful genomic resource that can also be used for functional genomics research on L. japonica in the future.

3.
PLoS One ; 9(11): e113668, 2014.
Article in English | MEDLINE | ID: mdl-25422894

ABSTRACT

Capparis spinosa is one of the most important eremophytes among the medicinal plants, and continued destruction of these plants poses a major threat to species survival. The development of methods to extract compounds, especially those of medicinal value, without harvesting the whole plant is an issue of considerable socioeconomic importance. On the basis of an established system for culture of suspension cells and callus in vitro, Gas Chromatograph-Mass Spectrometer (GC-MS) was used for the volatile oil composition analyzing in seed, fruit, suspension cells and callus. Fatty acids were the major component, and the highest content of alkanes was detected in seed, with <1.0% in suspension cells and callus. Esters, olefins and heterocyclic compounds were significantly higher in fruit than in the other materials. The content of acid esters in the suspension cells and callus was significantly higher than in seed and fruit. This indicated that the suspension cells and callus could be helpful for increasing the value of volatile oil and replacing seeds and fruit partially as a source of some compounds of the volatile oil and may also produce some new medical compounds. The above results give valuable information for sustainable use of C. spinosa and provide a foundation for use of the C. spinosa suspension cells and callus as an ongoing medical resource.


Subject(s)
Capparis/chemistry , Seeds/chemistry , Capparis/embryology , Gas Chromatography-Mass Spectrometry
4.
Naunyn Schmiedebergs Arch Pharmacol ; 381(1): 83-92, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19924402

ABSTRACT

Protosappanin A as one major and effective ingredient from Caesalpinia sappan L. exhibited antirejection activity obviously in heart-transplanted rat. The present study was designed to screen out the potential target genes of protosappanin A with microarray technology and reveal some molecular mechanism of immunosuppressive effect. Rats performed with ectopic peritoneal heart transplantation were randomized into three groups receiving different treatments for 7 days: protosappanin A group (25 mg kg(-1)), cyclosporine A group (10 mg kg(-1)), and control group. The differentially expressed genes responding to protosappanin A were analyzed with microarrays. Among common differentially expressed genes, the ones of interest were selected for further evaluation by real-time quantitative reverse transcriptase polymerase chain reaction (qRT-PCR), Western blot, immunochemistry, immunofluorescence, and ELISA. Among the 146 common differentially expressed genes, NF-kappaB and related genes like IkappaBa, IFN-r, and IP10 were selected for verification. The results of qRT-PCR, Western blot, immunochemistry, and ELISA showed that protosappanin A significantly reduced the expression of NF-kappaB, IFN-r, and IP10 (p < 0.05) and increased IkappaBa expression (p < 0.05) in graft. Moreover, the immunochemistry staining of NF-kappaB and IkappaBa was mainly observed in infiltrating mononuclear cells. Strikingly, immunofluorescent staining localized NF-kappaB to the TCR-positive T cells in graft. Furthermore, protosappanin A exhibited inhibitory effect on T cell proliferation in recipients after 7-day treatment. In conclusion, protosappanin A might act on T cells through inhibiting NF-kappaB activation and downstream gene expressions of IFN-r and IP10, meanwhile reducing T cell proliferation responding to alloantigen, so as to induce immunosuppressive effect. The results encourage a potential therapeutic evaluation of protosappanin A for clinical organ transplantation or other T cell-mediated immune disorders. Additionally, our study also verified the feasibility of microarray utilization in Chinese herb research to explore molecular mechanism and promote development of scientific theories.


Subject(s)
Graft Survival/drug effects , Heart Transplantation/immunology , Heart Transplantation/pathology , Immunosuppressive Agents/administration & dosage , NF-kappa B/antagonists & inhibitors , NF-kappa B/physiology , Phenols/administration & dosage , Signal Transduction/drug effects , T-Lymphocytes/drug effects , Animals , Caesalpinia , Drug Delivery Systems/methods , Drugs, Chinese Herbal/administration & dosage , Graft Survival/immunology , Male , Rats , Rats, Sprague-Dawley , Rats, Wistar , Signal Transduction/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL