Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 13(28): 32716-32728, 2021 Jul 21.
Article in English | MEDLINE | ID: mdl-34227797

ABSTRACT

Bacterial cellulose (BC) holds several unique properties such as high water retention capability, flexibility, biocompatibility, and high absorption capacity. All these features make it a potential material for wound healing applications. However, it lacks antibacterial properties, which hampers its applications for infectious wound healings. This study reported BC-based dressings containing ε-polylysine (ε-PL), cross-linked by a biocompatible and mussel-inspired polydopamine (PDA) for promoting infectious wound healing. BC membranes were coated with PDA by a simple self-polymerization process, followed by treating with different contents of ε-PL. The resulted membranes showed strong antibacterial properties against tested bacteria by both in vitro and in vivo evaluations. The membranes also exhibited hemocompatibility and cytocompatibility by in vitro investigations. Moreover, the functionalized membranes promoted infected wound healing using Sprague-Dawley rats as a model animal. A complete wound healing was observed in the group treated with functionalized membranes, while wounds were still open for control and pure BC groups in the same duration. Histological investigations indicated that the thickness of newborn skin was greater and smoother in the groups treated with modified membranes in comparison to neat BC or control groups. These results revealed that the functionalized membranes have great potential as a dressing material for infected wounds in future clinical applications.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Bandages , Cellulose/chemistry , Polylysine/therapeutic use , Staphylococcal Skin Infections/drug therapy , Wound Healing/drug effects , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/toxicity , Cellulose/toxicity , Escherichia coli/drug effects , Indoles/chemistry , Indoles/therapeutic use , Indoles/toxicity , Male , Mice , Microbial Sensitivity Tests , NIH 3T3 Cells , Polylysine/analogs & derivatives , Polylysine/toxicity , Polymers/chemistry , Polymers/therapeutic use , Polymers/toxicity , Rats, Sprague-Dawley , Skin/drug effects , Skin/pathology , Staphylococcal Skin Infections/pathology , Staphylococcus aureus/drug effects , Wound Infection/drug therapy , Wound Infection/pathology
2.
Chin J Nat Med ; 18(9): 666-676, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32928510

ABSTRACT

This study engineered ß-carotene ketolase CrtW and ß-carotene hydroxylase CrtZ to improve biosynthesis of astaxanthin in Escherichia coli. Firstly, crtW was randomly mutated to increase CrtW activities on conversion from ß-carotene to astaxanthin. A crtW* mutant with A6T, T105A and L239M mutations has improved 5.35-fold astaxanthin production compared with the wild-type control. Secondly, the expression levels of crtW* and crtZ on chromosomal were balanced by simultaneous modulation RBS regions of their genes using RBS library. The strain RBS54 selected from RBS library, directed the pathway exclusively towards the desired product astaxanthin as predominant carotenoid (99%). Lastly, the number of chromosomal copies of the balanced crtW-crtZ cassette from RBS54 was increased using a Cre-loxP based technique, and a strain with 30 copies of the crtW*-crtZ cassette was selected. This final strain DL-A008 had a 9.8-fold increase of astaxanthin production compared with the wild-type control. Fed-batch fermentation showed that DL-A008 produced astaxanthin as predominant carotenoid (99%) with a specific titer of 0.88 g·L-1 without addition of inducer. In conclusion, through constructing crtW mutation, balancing the expression levels between crtW* and crtZ, and increasing the copy number of the balanced crtW*-crtZ cassette, the activities of ß-carotene ketolase and ß-carotene hydroxylase were improved for conversion of ß-carotene to astaxanthin with higher efficiency. The series of conventional and novel metabolic engineering strategies were designed and applied to construct the astaxanthin hetero-producer strain of E. coli, possibly offering a general approach for the construction of stable hetero-producer strains for other natural products.


Subject(s)
Escherichia coli/metabolism , Metabolic Engineering/methods , Mixed Function Oxygenases/genetics , Oxygenases/genetics , Biosynthetic Pathways , Carotenoids/chemistry , Carotenoids/metabolism , Mixed Function Oxygenases/chemistry , Oxygenases/chemistry , Xanthophylls/chemistry , Xanthophylls/metabolism
3.
J Agric Food Chem ; 60(41): 10337-42, 2012 Oct 17.
Article in English | MEDLINE | ID: mdl-22998113

ABSTRACT

Seeking cheap, sustainable protein sources greatly facilitates in alleviating the dependence upon expensive animal-based protein in many developing countries. Caragana korshinskii Kom. offers a good alternative feedstock because of its high-content of protein, low fertilizer and pesticide requirements, excellent stress (high salty and less water) tolerance, wide adaptability, etc. The functional properties of C. korshinskii Kom. protein isolates by three different extraction methods were investigated. The extraction processes greatly influenced the physiological characteristics of protein isolates. C. korshinskii Kom. protein isolate by traditional alkaline extraction (Al-CPI) exhibited good performance on emulsifying activity index, oil and water absorption capacity, and foaming property compared to A-CPI ( C. korshinskii Kom. protein isolate by the acetone precipitation method) and TCA-CPI ( C. korshinskii Kom. protein isolate by trichloroacetic acid-acetone precipitation). The water and oil adsorption capacities of Al-CPI were observed at 4.99 and 3.45 g/g, respectively, even much higher than those of soy protein isolate (SPI) (3.94 and 2.95 g/g, respectively). The highest foaming capacity was observed by Al-CPI at 185.0%, followed by A-CPI (177.5%), TCA-CPI (142.5%), and SPI (141.9%), respectively. It has to be noted that A-CPI showed good solubility at acidic pH and excellent in vitro digestibility. After sequential pepsin-trypsin digestion, the percentage of N release of A-CPI reached up to 83.7%, which was 1.63 times that of Al-CPI (51.2%), 1.19 times that of TCA-CPI (70.1%), and slightly higher than that of the commercial SPI (82.5%). These results indicate that C. korshinskii Kom. holds great potential for application in the animal feed and food additive industry.


Subject(s)
Caragana/chemistry , Plant Proteins/chemistry , Plant Proteins/metabolism , Adsorption , Chemical Phenomena , Corn Oil/chemistry , Digestion , Emulsifying Agents , In Vitro Techniques , Plant Extracts/chemistry , Plant Proteins/isolation & purification , Solubility , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL