Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
RSC Adv ; 9(9): 5053-5063, 2019 Feb 05.
Article in English | MEDLINE | ID: mdl-35514661

ABSTRACT

Iron deficiency anemia (IDA) is one of the most serious nutritional problems. This study aimed to evaluate the therapeutic effects of a novel agar oligosaccharide-iron complex (AOS-iron) on rats with IDA, such as iron supplementation and recovery of antioxidant ability. Eighty-four weaned male SD rats were randomly divided into a normal control group (n = 12), which was fed with a standard diet, and an anemia model group (n = 72), which was fed with an iron-deficient diet for 4 weeks to establish a model of IDA. After the model was established, the rats with IDA were divided into six groups, namely, an anemia model group, a ferrous gluconate group, a ferrous sulfate (FeSO4) group, and low-dose (LD), medium-dose (MD) and high-dose (HD) AOS-iron groups, and fed with an iron-deficient diet and different iron supplements for 4 weeks, respectively. The results showed that HD AOS-iron exerted a significant restorative effect by returning blood parameters to normal levels in rats with IDA, including hemoglobin, red blood cells, hematocrit, mean cell volume, mean cell hematocrit, mean cell hemoglobin concentration, serum iron, total iron binding capacity, transferrin saturation, and serum ferritin. A histological analysis suggested that the liver morphology in the MD and HD AOS-iron groups was similar to that in the normal group. Furthermore, MD and HD AOS-iron improved antioxidant activities in the serum and liver. In general, high-dose (the same dose as those of ferrous gluconate and FeSO4) AOS-iron exhibited the best effects in terms of iron supplementation and antioxidant activities. The present findings showed that AOS-iron might be a potential new iron supplement.

2.
Transgenic Res ; 23(5): 795-807, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24962816

ABSTRACT

Because of the rapid development of transgenic maize, the potential effect of transgene flow on seed purity has become a major concern in public and scientific communities. Setting a proper isolation distance in field experiments and seed production is a possible solution to meet seed-quality standards and ensure adventitious contamination of products is below a specific threshold. By using a Gaussian plume model as basis and data recorded by meteorological stations as input, we have established a simple regionally applicable maize gene-flow model for prediction of the maximum threshold distances (MTD) at which gene-flow frequency is equal to or lower than a threshold value of 1 or 0.1 % (MTD1%, MTD0.1%). After optimization of the model variables, simulated outcrossing rate was a good fit to data obtained from field experiments (y = 1.156x, R (2) = 0.8913, n = 30, P < P 0.01). In the process of model calibration, it was found that only 15.82 % of the total amount of the pollen released by each plant participated in the dispersal process. The variable "a" for genetic pollen competitiveness between donor and recipient was introduced into our model, for the "Zinuo18" and "Su608" used, "a" was 17.47. Finally, the model was successfully used in the spring maize-growing region of Northeast China. The range of MTD1% and MTD0.1% in this region varied from 10 m to 49 m and from 17 m to 125 m, respectively.


Subject(s)
Agriculture/methods , Gene Flow/genetics , Models, Genetic , Plants, Genetically Modified/genetics , Seeds/genetics , Zea mays/genetics , China , Genetics, Population , Pollen/genetics , Regression Analysis , Seed Dispersal/genetics
3.
New Phytol ; 180(1): 217-228, 2008.
Article in English | MEDLINE | ID: mdl-18643943

ABSTRACT

We aimed to establish a rice gene flow model based on (i) the Gaussian plume model, (ii) data from a three-location x 3-yr field experiment on transgene flow to common rice cultivars (Oryza sativa), male sterile (ms) lines (O. sativa) and common wild rice (Oryza rufipogon), and (iii) 32-yr historical meteorological data collected from 38 meteorological stations in southern China during the rice flowering period. The concept of the gene flow coefficient (GFC) is proposed; that is, the ratio of the transgene flow frequency (G%) obtained from field experiments to the aggregated pollen dispersal frequency (P%) calculated based on the pollen dispersal model. The maximum distances of gene flow (MDGF) to traditional rice cultivars, ms lines, and common wild rice at a threshold value of either 1.0 or 0.1% were determined. The MDGF and its spatial distribution in southern China show that the gene flow pattern is significantly affected by the monsoon climate, the topography, and the outcrossing ability of recipients. We believe that the information provided in this study will be useful for the risk assessment of transgenic rice in other rice-growing regions.


Subject(s)
Gene Flow , Models, Genetic , Oryza/genetics , Transgenes , China , Oryza/physiology , Pollen/physiology , Reproduction
4.
Transgenic Res ; 16(4): 491-501, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17443417

ABSTRACT

Gene flow from genetically modified (GM) crops to the same species or wild relatives is a major concern in risk assessment. Transgenic rice with insect and/or disease resistance, herbicide, salt and/or drought tolerance and improved quality has been successfully developed. However, data on rice gene flow from environmental risk assessment studies are currently insufficient for the large-scale commercialization of GM rice. We have provided data on the gene flow frequency at 17 distances between a GM japonica line containing the bar gene as a pollen donor and two indica hybrid rice varieties and four male-sterile (ms) lines. The GM line was planted in a 640 m2 in an isolated experimental plot (2.4 ha), which simulates actual conditions of rice production with pollen competition. Results showed that: (1) under parallel plantation at the 0-m zone, the transgene flow frequency to the ms lines ranged from 3.145 to 36.116% and was significantly higher than that to hybrid rice cultivars (0.037-0.045%). (2) Gene flow frequency decreased as the distance increased, with a sharp cutoff point at about 1-2 m; (3) The maximum distance of transgene flow was 30-40 m to rice cultivars and 40-150 m to ms lines. We believe that these data will be useful for the risk assessment and management of transgenic rice lines, especially in Asia where 90% of world's rice is produced and hybrid rice varieties are extensively used.


Subject(s)
Gene Flow , Oryza/genetics , Plants, Genetically Modified/genetics , Pollen , Transgenes
SELECTION OF CITATIONS
SEARCH DETAIL