Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Skin Res Technol ; 29(3): e13303, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36973992

ABSTRACT

BACKGROUND: Skin photoaging is the damage caused by excessive exposure to ultraviolet (UV) irradiation. We investigated the effect of adenosine triphosphate (ATP) supplementation on UVB-induced photoaging in HaCaT cells and its potential molecular mechanism. MATERIALS AND METHODS: The toxicity of ATP on HaCaT cells was examined by the MTT assay. The effects of ATP supplementation on the viability and apoptosis of HaCaT cells were determined by crystal-violet staining and flow cytometry, respectively. Cellular and mitochondrial ROS were stained using fluorescent dyes. Expression of Bax, B-cell lymphoma (Bcl)-2, sirtuin (SIRT)3, and superoxide dismutase (SOD)2 was measured via western blotting. RESULTS: ATP (1, 2 mM) exerted no toxic effect on the normal growth of HaCaT cells. UVB irradiation caused the apoptosis of HaCaT cells, and ATP supplementation inhibited the apoptosis induced by UVB significantly, as verified by expression of Bax and Bcl-2. UVB exposure resulted in accumulation of cellular and mitochondrial reactive oxygen species (ROS), but ATP supplementation suppressed these increases. Expression of SIRT3 and SOD2 was decreased upon exposure to UVB irradiation but, under ATP supplementation, expression of SIRT3 and SOD2 was reversed, which was consistent with the reduction in ROS level observed in ATP-treated HaCaT cells after exposure to UVB irradiation. CONCLUSIONS: ATP supplementation can suppress UVB irradiation-induced photoaging in HaCaT cells via upregulation of expression of SIRT3 and SOD2.


Subject(s)
Sirtuin 3 , Skin Aging , Humans , Up-Regulation , Reactive Oxygen Species , HaCaT Cells/metabolism , Sirtuin 3/metabolism , Sirtuin 3/pharmacology , bcl-2-Associated X Protein/metabolism , bcl-2-Associated X Protein/pharmacology , Superoxide Dismutase/metabolism , Superoxide Dismutase/pharmacology , Apoptosis/radiation effects , Keratinocytes/metabolism , Dietary Supplements , Ultraviolet Rays/adverse effects
2.
Sci Total Environ ; 752: 142264, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33207511

ABSTRACT

Green synthesis of silver nanoparticles (Ag NPs) by using plants extracts has provided an eco-friendly alternation for industry and agriculture application. Here, we prepared Ag NPs by using the cucumber leaves and rice husk extracts, and further assessed the antimicrobial activity and phytotoxicity of green synthesized Ag NPs (g-Ag NPs) comparing with chemically synthesized Ag NPs (chem-Ag NPs). The chem-Ag NPs had strong antibacterial activity on the growth of Escherichia coli, while g-Ag NPs by rice husks (gr-Ag NPs) exhibited long-term antibacterial effects. In terms of phytotoxicity, the chem-Ag NPs induced over-generation of ROS and activated plant antioxidant defense systems, thus resulting in the upregulation of MDA and Zn contents and downregulation of antioxidant capacity, carotenoid, globulin and Mo contents. However, g-Ag NPs significantly promoted cucumber photosynthesis by increasing chlorophyll contents. Besides, the green synthesized Ag NPs by cucumber extracts (gc-Ag NPs) increased protein contents and gr-Ag NPs stimulated the upregulation of Mn and the downregulation of Al, which were all positive effects. Overall, compared with chem-Ag NPs, g-Ag NPs exhibited long-tern antimicrobial properties and attenuated toxicity to plants, which could be used as potential nanopesticide or nanoscale growth regulator in agriculture.


Subject(s)
Anti-Infective Agents , Metal Nanoparticles , Anti-Bacterial Agents/toxicity , Green Chemistry Technology , Metal Nanoparticles/toxicity , Microbial Sensitivity Tests , Plant Extracts/toxicity , Silver/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL