Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 284
Filter
Add more filters

Complementary Medicines
Country/Region as subject
Publication year range
1.
ACS Nano ; 18(11): 7739-7768, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38456396

ABSTRACT

Silicon transistors are approaching their physical limit, calling for the emergence of a technological revolution. As the acknowledged ultimate version of transistor channels, 2D semiconductors are of interest for the development of post-Moore electronics due to their useful properties and all-in-one potentials. Here, the promise and current status of 2D semiconductors and transistors are reviewed, from materials and devices to integrated applications. First, we outline the evolution and challenges of silicon-based integrated circuits, followed by a detailed discussion on the properties and preparation strategies of 2D semiconductors and van der Waals heterostructures. Subsequently, the significant progress of 2D transistors, including device optimization, large-scale integration, and unconventional devices, are presented. We also examine 2D semiconductors for advanced heterogeneous and multifunctional integration beyond CMOS. Finally, the key technical challenges and potential strategies for 2D transistors and integrated circuits are also discussed. We envision that the field of 2D semiconductors and transistors could yield substantial progress in the upcoming years and hope this review will trigger the interest of scientists planning their next experiment.

2.
J Ethnopharmacol ; 327: 118049, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38484954

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Liriope spicata Lour., a species listed in the catalogue of 'Medicinal and Edible Homologous Species', is traditionally used for the treatment of fatigue, restlessness, insomnia and constipation. AIM OF THE STUDY: This study is aimed to evaluate the sedative and hypnotic effect of the saponins from a natural plant L. spicata Lour. in vivo. MATERIALS AND METHODS: The total saponin (LSTS) and purified saponin (LSPS) were extracted from L. spicata, followed by a thorough analysis of their major components using the HPLC-MS. Subsequently, the therapeutic efficacy of LSTS and LSPS was evaluated by the improvement of anxiety and depression behaviors of the PCPA-induced mice. RESULTS: LSTS and LSPS exhibited similar saponin compositions but differ in their composition ratios, with liriopesides-type saponins accounting for a larger proportion in LSTS. Studies demonstrated that both LSTS and LSPS can extend sleep duration and immobility time, while reducing sleep latency in PCPA-induced mice. However, there was no significant difference in weight change among the various mice groups. Elisa results indicated that the LSTS and LSPS could decrease levels of NE, DA, IL-6, and elevate the levels of 5-HT, NO, PGD2 and TNF-α in mice plasma. LSTS enhanced the expression of neurotransmitter receptors, while LSPS exhibited a more pronounced effect in regulating the expression of inflammatory factors. In conclusion, the saponins derived from L. spicata might hold promise as ingredients for developing health foods with sedative and hypnotic effects, potentially related to the modulation of serotonergic and GABAAergic neuron expression, as well as immunomodulatory process.


Subject(s)
Saponins , Sleep Initiation and Maintenance Disorders , Animals , Mice , Hypnotics and Sedatives/pharmacology , Hypnotics and Sedatives/therapeutic use , Sleep Initiation and Maintenance Disorders/chemically induced , Sleep Initiation and Maintenance Disorders/drug therapy , Saponins/pharmacology , Saponins/therapeutic use , Plants, Edible , Anxiety
3.
Phytomedicine ; 128: 155517, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38518650

ABSTRACT

BACKGROUND: Berberine is the main bioactive constituent of Coptis chinensis, a quaternary ammonium alkaloid. While berberine's cardiovascular benefits are well-documented, its impact on thrombosis remains not fully understood. PURPOSE: This study investigates the potential of intestinal microbiota as a novel target for preventing thrombosis, with a focus on berberine, a natural compound known for its effectiveness in managing cardiovascular conditions. METHODS: Intraperitoneal injection of carrageenan induces the secretion of chemical mediators such as histamine and serotonin from mast cells to promote thrombosis. This model can directly and visually observe the progression of thrombosis in a time-dependent manner. Thrombosis was induced by intravenous injection of 1 % carrageenan solution (20 mg/kg) to all mice except the vehicle control group. Quantitative analysis of gut microbiota metabolites through LC/MS. Then, the gut microbiota of mice was analyzed using 16S rRNA sequencing to assess the changes. Finally, the effects of gut microbiota on thrombosis were explored by fecal microbiota transplantation. RESULTS: Our research shows that berberine inhibits thrombosis by altering intestinal microbiota composition and related metabolites. Notably, berberine curtails the biosynthesis of phenylacetylglycine, a thrombosis-promoting coproduct of the host-intestinal microbiota, by promoting phenylacetic acid degradation. This research underscores the significance of phenylacetylglycine as a thrombosis-promoting risk factor, as evidenced by the ability of intraperitoneal phenylacetylglycine injection to reverse berberine's efficacy. Fecal microbiota transplantation experiment confirms the crucial role of intestinal microbiota in thrombus formation. CONCLUSION: Initiating our investigation from the perspective of the gut microbiota, we have, for the first time, unveiled that berberine inhibits thrombus formation by promoting the degradation of phenylacetic acid, consequently suppressing the biosynthesis of PAG. This discovery further substantiates the intricate interplay between the gut microbiota and thrombosis. Our study advances the understanding that intestinal microbiota plays a crucial role in thrombosis development and highlights berberine-mediated intestinal microbiota modulation as a promising therapeutic approach for thrombosis prevention.


Subject(s)
Berberine , Gastrointestinal Microbiome , Phenylacetates , Thrombosis , Animals , Gastrointestinal Microbiome/drug effects , Berberine/pharmacology , Berberine/analogs & derivatives , Thrombosis/prevention & control , Male , Mice , Phenylacetates/pharmacology , Carrageenan , Coptis/chemistry , Disease Models, Animal , Mice, Inbred C57BL , Fecal Microbiota Transplantation , RNA, Ribosomal, 16S
4.
Phytomedicine ; 126: 155470, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38417242

ABSTRACT

BACKGROUND: Asthma affects 3% of the global population, leading to over 0.25 million deaths. Due to its complexity, asthma is difficult to cure or prevent, and current therapies have limitations. This has led to a growing demand for alternative asthma treatments. We found rosmarinic acid (RosA) as a potential new drug candidate from natural medicine. However, RosA has poor bioavailability and remains mainly in the gastrointestinal tract after oral administration, suggesting the involvement of gut microbiota in its bioactivity. PURPOSE: To investigate the mechanism of RosA in alleviating allergic asthma by gut-lung axis. METHODS: We used 16S rRNA gene sequencing and metabolites analysis to investigate RosA's modulation of gut microbiota. Techniques of molecular biology and metabolomics were employed to study the pharmacological mechanism of RosA. Cohousing was used to confirm the involvement of gut microbiota in RosA-induced improvement of allergic asthma. RESULTS: RosA decreased cholate levels from spore-forming bacteria, leading to reduced 5-hydroxytryptamine (5-HT) synthesis, bronchoconstriction, vasodilation, and inflammatory cell infiltration. It also increased short-chain fatty acids (SCFAs) levels, facilitating the expression of intestinal tight junction proteins to promote intestinal integrity. SCFAs upregulated intestinal monocarboxylate transporters (MCTs), thereby improving their systemic delivery to reduce Th2/ILC2 mediated inflammatory response and suppress eosinophil influx and mucus production in lung. Additionally, RosA inhibited lipopolysaccharide (LPS) production and translocation, leading to reduced TLR4-NFκB mediated pulmonary inflammation and oxidative stress. CONCLUSIONS: The anti-asthmatic mechanism of oral RosA is primarily driven by modulation of gut microbiota-derived 5-HT, SCFAs, and LPS, achieving a combined synergistic effect. RosA is a safe, effective, and reliable drug candidate that could potentially replace glucocorticoids for asthma treatment.


Subject(s)
Asthma , Rosmarinic Acid , Humans , Immunity, Innate , RNA, Ribosomal, 16S/genetics , Lipopolysaccharides , Serotonin , Lymphocytes , Asthma/drug therapy , Asthma/metabolism , Lung/metabolism , Fatty Acids, Volatile/metabolism
5.
J Ethnopharmacol ; 323: 117618, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38141791

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Polygala tenuifolia Willd. has been widely used in the treatment of cancer, forgetfulness, depression and other diseases. AIM OF REVIEW: The purpose of this study was to investigate the sleep-enhancing effect and mechanism of P. tenuifolia saponins (PTS). MATERIALS AND METHODS: The total saponin (YZ-I) and purified saponin (YZ-II) fractions were extracted and ICR mice model of insomnia was established by p-chlorophenylalanine (PCPA) induction to observe anxiety and depression behaviors. Effects of YZ-I and YZ-II on the levels of neurotransmitters, hormones, and inflammation cytokines were detected by ELISA, RT-qPCR and western blotting. RESULTS: The results showed that YZ-I and YZ-II reduced the immobility time of mice and prolonged the sleep time of mice and significantly increased the concentrations of 5-HT, NE, PGD2, IL-1ß and TNF-α. YZ-I and YZ-II regulated GABAARα2, GABAARα3, GAD65/67, 5-HT1A and 5-HT2A, while regulated the levels of inflammatory cytokines such as DPR, PGD2, iNOS and TNF-α to exert sedative and hypnotic effects. CONCLUSION: PTS are mainly achieved sedative and hypnotic effects by altering serotonergic, GABAergic and immune systems, but the effects and mechanisms of action of YZ-I were different from YZ-II.


Subject(s)
Polygala , Saponins , Sleep Initiation and Maintenance Disorders , Animals , Mice , Hypnotics and Sedatives/pharmacology , Sleep Initiation and Maintenance Disorders/drug therapy , Saponins/pharmacology , Tumor Necrosis Factor-alpha , Serotonin , Mice, Inbred ICR , gamma-Aminobutyric Acid
6.
Phytochemistry ; 217: 113904, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37926152

ABSTRACT

Seventeen undescribed iridoid derivatives (1-17) and four known compounds (18-21) were isolated from the whole plant of Hedyotis diffusa Willd. Their structures were elucidated based on unambiguous spectroscopic data (UV, IR, HRESIMS, CD, and 1D and 2D NMR). It is noteworthy that compounds 1-8, which possess unique long-chain aliphatic acid moiety, were reported for the first time among the iridoid natural products. All compounds were evaluated for their anti-inflammatory activities in lipopolysaccharide-induced RAW 264.7 cells. Compounds 2, 4, and 6 showed significant suppression effects on nitric oxide production, with IC50 values of 5.69, 6.16, and 6.84 µM, respectively. The structure-activity relationships of these compounds indicated that long-chain aliphatic moieties at C-10 might be the key group for their anti-inflammatory activities. The therapeutic properties of these iridoid derivatives could give an insight into utilizing H. diffusa as a natural source of anti-inflammatory agents.


Subject(s)
Hedyotis , Iridoids , Iridoids/pharmacology , Iridoids/chemistry , Hedyotis/chemistry , Plant Extracts/chemistry , Structure-Activity Relationship , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry
7.
Virol J ; 20(1): 277, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38017515

ABSTRACT

BACKGROUND: In a randomized trial, Lianhuaqingwen (LHQW) capsule was effective for accelerating symptom recovery among patients with coronavirus disease 2019 (COVID-19). However, the lack of blinding and limited sample sizes decreased the level of clinical evidence. OBJECTIVES: To evaluate the efficacy and safety of LHQW capsule in adults with mild-to-moderate COVID-19. METHODS: We conducted a double-blind randomized controlled trial in adults with mild-to-moderate COVID-19 (17 sites from China, Thailand, Philippine and Vietnam). Patients received standard-of-care alone or plus LHQW capsules (4 capsules, thrice daily) for 14 days. The primary endpoint was the median time to sustained clinical improvement or resolution of nine major symptoms. RESULTS: The full-analysis set consisted of 410 patients in LHQW capsules and 405 in placebo group. LHQW significantly shortened the primary endpoint in the full-analysis set (4.0 vs. 6.7 days, hazards ratio: 1.63, 95% confidence interval: 1.39-1.90). LHQW capsules shortened the median time to sustained clinical improvement or resolution of stuffy or runny nose (2.8 vs. 3.7 days), sore throat (2.0 vs. 2.6 days), cough (3.2 vs. 4.9 days), feeling hot or feverish (1.0 vs. 1.3 days), low energy or tiredness (1.3 vs. 1.9 days), and myalgia (1.5 vs. 2.0 days). The duration to sustained clinical improvement or resolution of shortness of breath, headache, and chills or shivering did not differ significantly between the two groups. Safety was comparable between the two groups. No serious adverse events were reported. INTERPRETATION: LHQW capsules promote recovery of mild-to-moderate COVID-19 via accelerating symptom resolution and were well tolerated. Trial registration ChiCTR2200056727 .


Subject(s)
COVID-19 , Drugs, Chinese Herbal , Adult , Humans , Double-Blind Method , Drugs, Chinese Herbal/therapeutic use , Treatment Outcome
8.
Phytochemistry ; 216: 113889, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37813134

ABSTRACT

Six undescribed lavandulylated flavonoids (1-6) were isolated from the roots of Sophora flavescens. Remarkably, compounds 1 and 2, which were composed of a flavane unit and a phloroglucinol unit, were the first reported dimers. Compounds 3 and 4 were the first reported neoflavonoids with lavandulyl units. Compounds 5 and 6 were chalcone with oxidized lavandulyl units. Their structures were fully characterized by cumulative analyses of UV, IR, HRESIMS, NMR and ECD spectroscopic data, along with computational calculations through density functional theory. Compounds 1 and 2 showed significant protein tyrosine phosphatase-1B inhibitory activities with IC50 values of 2.669 and 3.596 µM, respectively.


Subject(s)
Flavonoids , Sophora , Flavonoids/chemistry , Sophora flavescens , Sophora/chemistry , Plant Extracts/chemistry , Plant Roots/chemistry
9.
ACS Appl Bio Mater ; 6(10): 4413-4420, 2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37772974

ABSTRACT

Optical imaging holds great promise for monitoring bacterial infectious processes and drug resistance with high temporal-spatial resolution. Currently, the diagnosis of deep-seated bacterial infections in vivo with fluorescence imaging, including near-infrared (NIR) fluorescence imaging technology, remains a significant challenge due to its limited tissue penetration depth. In this study, we developed a highly specific targeting probe, Cy7-Neo-NO2, by conjugating a bacterial 16S rRNA-targeted moiety, neomycin, with a bacterial nitroreductase (NTR)-activated NIR photoacoustic (PA) scaffold using our previously developed caged photoinduced electron transfer (a-PeT) approach. This conjugation effectively resolved probe aggregation issues in physiological conditions and substantially enhanced its reactivity toward bacterial NTR. Notably, Cy7-Neo-NO2 enabled the first in situ photoacoustic imaging of pneumonia induced by methicillin-resistant Staphylococcus aureus (MRSA), as well as the detection of bacteria within tumors. Furthermore, upon NIR irradiation, Cy7-Neo-NO2 successfully inhibited MRSA growth through a synergistic effect combining photothermal therapy and photodynamic therapy. Our results provided an effective tool for obtaining exceptional PA agents for accurate diagnosis, therapeutic evaluation of deep-seated bacterial infections in vivo, and intratumoral bacteria-specific recognition.

10.
Phytomedicine ; 116: 154841, 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37196513

ABSTRACT

BACKGROUND: Plantaginis Herba (Plantago asiatica L.) has the effects of clearing heat and diuresis, oozing wet and drenching. As the main active components of Plantaginis Herba (Plantago asiatica L.), plantamajoside have a wide range of antitumor activities but very low bioavailability. The process of interacting between plantamajoside and gut microbiota remains unclear. PURPOSE: To illustrate the process of interacting between plantamajoside and gut microbiota based on high-resolution mass spectrometry and targeted metabolomics methods. STUDY DESIGN AND METHODS: This experiment was divided into two parts. First, metabolites produced from plantamajoside by gut microbiota were identified and quantified based on high-resolution mass spectrometry and LC-MS/MS. Additionally, stimulation of plantamajoside on gut microbiota-derived metabolites was determined by targeted metabolomics and gas chromatography. RESULTS: We first found that plantamajoside was rapidly metabolized by gut microbiota. Then, we identified metabolites of plantamajoside by high-resolution mass spectrometry and speculated that plantamajoside was metabolized into five metabolites including calceolarioside A, dopaol glucoside, hydroxytyrosol, 3-(3-hydroxyphenyl) propionic acid (3-HPP) and caffeic acid. Among them, we quantitatively analyzed four possible metabolites based on LC‒MS/MS and found that hydroxytyrosol and 3-HPP were final products by the gut microbiota. In addition, we studied whether plantamajoside could affect the short-chain fatty acid (SCFA) and amino acid metabolites. We found that plantamajoside could inhibit the acetic acid, kynurenic acid (KYNA) and kynurenine (KN) produced by intestinal bacteria and promote the indole propionic acid (IPA) and indole formaldehyde (IALD) produced by intestinal bacteria. CONCLUSION: An interaction between plantamajoside and gut microbiota was revealed in this study. Unlike the traditional metabolic system, the special metabolic characteristics of plantamajoside in gut microbiota was found. Plantamajoside was metabolized into the following active metabolites: calceolarioside A, dopaol glucoside, hydroxytyrosol, caffeic acid and 3-HPP. Besides, plantamajoside could affect SCFA and tryptophan metabolism by gut microbiota. Especially, the exogenous metabolites hydroxytyrosol, caffeic acid and endogenous metabolites IPA may have potential association with the antitumor activity of plantamajoside.


Subject(s)
Gastrointestinal Microbiome , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Glucosides/pharmacology , Drug Interactions
11.
J Ethnopharmacol ; 313: 116555, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37100263

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Traditional Chinese medicines (TCMs) are often prepared in oral dosage forms, making TCMs interact with gut microbiota after oral administration, which could affect the therapeutic effect of TCM. Xiaoyao Pills (XYPs) are a commonly used TCM in China to treat depression. The biological underpinnings, however, are still in its infancy due to its complex chemical composition. AIM OF THE STUDY: The study aims to explore XYPs' underlying antidepressant mechanism from both in vivo and in vitro. MATERIALS AND METHODS: XYPs were composed of 8 herbs, including the root of Bupleurum chinense DC., the root of Angelica sinensis (Oliv.) Diels, the root of Paeonia lactiflora Pall., the sclerotia of Poria cocos (Schw.) Wolf, the rhizome of Glycyrrhiza uralensis Fisch., the leaves of Mentha haplocalyx Briq., the rhizome of Atractylis lancea var. chinensis (Bunge) Kitam., and the rhizome of Zingiber officinale Roscoe, in a ratio of 5:5:5:5:4:1:5:5. The chronic unpredictable mild stress (CUMS) rat models were established. After that, the sucrose preference test (SPT) was carried out to evaluate if the rats were depressed. After 28 days of treatment, the forced swimming test and SPT were carried out to evaluate the antidepressant efficacy of XYPs. The feces, brain and plasma were taken out for 16SrRNA gene sequencing analysis, untargeted metabolomics and gut microbiota transformation analysis. RESULTS: The results revealed multiple pathways affected by XYPs. Among them, the hydrolysis of fatty acids amide in brain decreased most significant via XYPs treatment. Moreover, the XYPs' metabolites which mainly derived from gut microbiota (benzoic acid, liquiritigenin, glycyrrhetinic acid and saikogenin D) were found in plasma and brain of CUMS rats and could inhibit the levels of FAAH in brain, which contributed to XYPs' antidepressant effect. CONCLUSIONS: The potential antidepressant mechanism of XYPs by untargeted metabolomics combined with gut microbiota-transformation analysis was revealed, which further support the theory of gut-brain axis and provide valuable evidence of the drug discovery.


Subject(s)
Drugs, Chinese Herbal , Gastrointestinal Microbiome , Rats , Animals , Medicine, Chinese Traditional , Depression/drug therapy , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Brain
12.
Biomed Pharmacother ; 163: 114754, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37094549

ABSTRACT

Metformin (MTF) and berberine (BBR) share several therapeutic benefits in treating metabolic-related disorders. However, as the two agents have very different chemical structure and bioavailability in oral route, the goal of this study is to learn their characteristics in treating metabolic disorders. The therapeutic efficacy of BBR and MTF was systemically investigated in the high fat diet feeding hamsters and/or ApoE(-/-) mice; in parallel, gut microbiota related mechanisms were studied for both agents. We discovered that, although both two drugs had almost identical effects on reducing fatty liver, inflammation and atherosclerosis, BBR appeared to be superior over MTF in alleviating hyperlipidemia and obesity, but MTF was more effective than BBR for the control of blood glucose. Association analysis revealed that the modulation of intestinal microenvironment played a crucial role in the pharmacodynamics of both drugs, in which their respective superiority on the regulation of gut microbiota composition and intestinal bile acids might contribute to their own merits on lowering glucose or lipids. This study shows that BBR may be a good alternative for MTF in treating diabetic patients, especially for those complicated with dyslipidemia and obesity.


Subject(s)
Berberine , Hyperlipidemias , Metformin , Cricetinae , Mice , Animals , Metformin/pharmacology , Metformin/therapeutic use , Berberine/pharmacology , Berberine/therapeutic use , Obesity/drug therapy , Hyperlipidemias/drug therapy , Lipids/therapeutic use
13.
Adv Mater ; 35(35): e2301901, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37079477

ABSTRACT

Photothermal therapy (PTT) has received increasing interest in cancer therapeutics owing to its excellent efficacy and controllability. However, there are two major limitations in PTT applications, which are the tissue penetration depth of lasers within the absorption range of photothermal agents and the unavoidable tissue empyrosis induced by high-energy lasers. Herein, a gas/phototheranostic nanocomposite (NA1020-NO@PLX) is engineered that integrates the second near-infrared-peak (NIR-II-peak) absorbing aza-boron-dipyrromethenes (aza-BODIPY,NA1020) with the thermal-sensitive nitric oxide (NO) donor (S-nitroso-N-acetylpenicillamine, SNAP). An enhanced intramolecular charge transfer mechanism is proposed to achieve the NIR-II-peak absorbance (λmax = 1020 nm) on NA1020, thereby obtaining its deep tissue penetration depth. The NA1020 exhibits a remarkable photothermal conversion, making it feasible for the deep-tissue orthotopic osteosarcoma therapy and providing favorable NIR-II emission to precisely pinpoint the tumor for a visible PTT process. The simultaneously investigated atraumatic therapeutic process with an enhanced cell apoptosis mechanism indicates the feasibility of the synergistic NO/low-temperature PTT for osteosarcoma. Herein, this gas/phototheranostic strategy optimizes the existing PTT to present a repeatable and atraumatic photothermal therapeutic process for deep-tissue tumors, validating its potential clinical applications.


Subject(s)
Bone Neoplasms , Nanocomposites , Nanoparticles , Neoplasms , Osteosarcoma , Humans , Nitric Oxide Donors , Phototherapy , Nanocomposites/therapeutic use , Cell Line, Tumor
14.
Mol Nutr Food Res ; 67(12): e2200364, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36934422

ABSTRACT

SCOPE: Dried Ziziphus jujuba Mill. kernel is a potential natural source of nutraceutical and therapeutic agents in China. Recent researches have shown that the saponins of dried Z. jujuba Mill. kernel (SZJs: SZJ-1 and SZJ-2) have various biological effects. However, the hypoglycemic activities and underlying mechanisms of SZJs remain obscure. METHOD AND RESULTS: In the current study, two saponins SZJ-1 and SZJ-2 mainly composed of betulinic acid, spinosin, jujuboside A, and jujuboside B are extracted and is olated from dried Z. jujuba Mill. kernel. The SZJ-1 and SZJ-2 could significantly inhibit the activities of digestion enzymes α-glucosidase and α-amylases. The hypoglycemic ability of SZJ-1 and SZJ-2 is further investigated and the results show that SZJ-1 and SZJ-2 can improve the hyperglycemic by increasing the glucose consumption, improving the superoxide dismutase (SOD), hexokinase (HK), pyruvate kinase (PK) activities, and decrease the MDA content of insulin resistant HepG2 cells. Furthermore, SZJ-1 and SZJ-2 can activate the phosphorated adenosine 5'-monophosphate (AMP)-activated protein kinase α (p-AMPK), phosphoinositide 3-kinase p110α (PI3K-p110α), and phosphorated glycogen synthase kinase-3ß (Ser9) (p-GSK3ß). CONCLUSION: These results indicating that the SZJ-1 and SZJ-2 might improve the insulin resistant symptoms by improving the energy metabolic level and increasing the glycogen synthase activity of HepG2 cells.


Subject(s)
Insulins , Saponins , Ziziphus , Plant Extracts/pharmacology , Hypoglycemic Agents/pharmacology , Phosphatidylinositol 3-Kinases , Saponins/pharmacology
15.
Nat Neurosci ; 26(5): 751-764, 2023 05.
Article in English | MEDLINE | ID: mdl-36973513

ABSTRACT

The emergence of consciousness from anesthesia, once assumed to be a passive process, is now considered as an active and controllable process. In the present study, we show in mice that, when the brain is forced into a minimum responsive state by diverse anesthetics, a rapid downregulation of K+/Cl- cotransporter 2 (KCC2) in the ventral posteromedial nucleus (VPM) serves as a common mechanism by which the brain regains consciousness. Ubiquitin-proteasomal degradation is responsible for KCC2 downregulation, which is driven by ubiquitin ligase Fbxl4. Phosphorylation of KCC2 at Thr1007 promotes interaction between KCC2 and Fbxl4. KCC2 downregulation leads to γ-aminobutyric acid type A receptor-mediated disinhibition, enabling accelerated recovery of VPM neuron excitability and emergence of consciousness from anesthetic inhibition. This pathway to recovery is an active process and occurs independent of anesthetic choice. The present study demonstrates that ubiquitin degradation of KCC2 in the VPM is an important intermediate step en route to emergence of consciousness from anesthesia.


Subject(s)
Anesthesia , Anesthetics , Symporters , Mice , Animals , Consciousness , Ventral Thalamic Nuclei , Thalamus/metabolism , Receptors, GABA/metabolism , Symporters/metabolism , Ubiquitins/metabolism
16.
Neoplasma ; 70(1): 94-102, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36637084

ABSTRACT

Liver cancer represents one of the deadliest cancers, with a rising incidence worldwide. Triptonide is found in the traditional Chinese medicinal plant Tripterygium wilfordii Hook. This study aimed to examine the anticancer properties of triptonide in human hepatocellular carcinoma (HCC). HCC cells were administered with triptonide at various levels, and CCK-8 and colony formation assays were carried out for detecting HCC cell proliferation. Then, cell apoptosis and cell cycle distribution were evaluated by flow cytometry. Tumor growth was monitored noninvasively by ultrasound imaging. Cell migration and invasion were quantitated by wound healing and Transwell assays. A metastasis model was established via tail vein injection of HCC cells in nude mice. Immunoblot was performed to quantitate the expression of proteins involved in the EGFR/PI3K/AKT signaling and its downstream effectors. Triptonide repressed cell proliferation and induced cell cycle arrest and apoptosis in cultured HCC cells, and suppressed tumor growth in vivo. In addition, triptonide inhibited EMT, migration and invasion in cultured HCC cells, and lung metastasis in nude mice. Mechanistically, triptonide acted by inhibiting the EGFR/PI3K/AKT signaling and regulated its downstream effectors, e.g., the cell cycle-associated protein cyclin D1, the apoptosis-related protein Bcl-2, the EMT marker E-cadherin, and the invasion-related protein MMP-9. Triptonide suppresses proliferation, EMT, migration and invasion, and promotes apoptosis and cell cycle arrest by repressing the EGFR/PI3K/AKT signaling. Therefore, triptonide might be considered for liver cancer treatment.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Mice , Humans , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Mice, Nude , Cell Proliferation , ErbB Receptors , Cell Line, Tumor , Cell Movement
17.
J Ethnopharmacol ; 306: 116158, 2023 Apr 24.
Article in English | MEDLINE | ID: mdl-36638854

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Dengzhan shengmai (DZSM) formula, composed of four herbal medicines (Erigeron breviscapus, Panax ginseng, Schisandra chinensis, and Ophiopogon japonicus), is widely used in the recovery period of ischemic cerebrovascular diseases; however, the associated molecular mechanism remains unclear. AIM OF THE STUDY: The purpose of this study was to uncover the links between the microbiota-gut-brain axis and the efficacy of DZSM in ameliorating cerebral ischemic diseases. MATERIALS AND METHODS: The effects of DZSM on the gut microbiota community and bacteria-derived short-chain fatty acid (SCFA) production were evaluated in vivo using a rat model of cerebral ischemia and in vitro through the anaerobic incubation with fresh feces derived from model animals. Subsequently, the mechanism underlying the role of SCFAs in the DZSM-mediated treatment of cerebral ischemia was explored. RESULTS: We found that DZSM treatment significantly altered the composition of the gut microbiota and markedly enhanced SCFA production. The consequent increase in SCFA levels led to the upregulation of the expression of monocarboxylate transporters and facilitated the transportation of intestinal SCFAs into the brain, thereby inhibiting the apoptosis of neurocytes via the regulation of the PI3K/AKT/caspase-3 pathway. The increased intestinal SCFA levels also contributed to the repair of the 2VO-induced disruption of gut barrier integrity and inhibited the translocation of lipopolysaccharide from the intestine to the brain, thus attenuating neuroinflammation. Consequently, cerebral neuropathy and oxidative stress were significantly improved in 2VO model rats, leading to the amelioration of cerebral ischemia-induced cognitive dysfunction. Finally, fecal microbiota transplantation could reproduce the beneficial effects of DZSM on SCFA production and cerebral ischemia. CONCLUSIONS: Our findings suggested that SCFAs mediate the effects of DZSM in ameliorating cerebral ischemia via the gut microbiota-gut-brain axis.


Subject(s)
Brain Ischemia , Microbiota , Rats , Animals , Brain-Gut Axis , Phosphatidylinositol 3-Kinases , Fatty Acids, Volatile/metabolism , Cerebral Infarction
18.
Article in English | MEDLINE | ID: mdl-36285158

ABSTRACT

Purpose: This study focused on determining the anticancer effect of paeoniflorin and geniposide mixture (PFGS) combined with sorafenib (Sor) in hepatocellular carcinoma (HCC) and, in particular, whether PFGS increases the antitumor effect of Sor by modulating the NF-κB/HIF-2α/SerpinB3 pathway. Methods: The H22 hepatoma tumor-bearing mouse model was treated with PFGS, Sor, and a combination of the two drugs for 12 days. The effects of PFGS combined with Sor on tumor growth and apoptosis and the expression of NF-κB, HIF-2α, and SerpinB3 in tumor tissue were assessed. In addition, Sor-resistant hepatoma cells were treated with PFGS, Sor, and the combination of the two drugs in vitro. The effects of PFGS combined with Sor on cell proliferation and invasion and the protein expression of NF-κB p65, HIF-2α, and SerpinB3 were investigated. Results: PFGS combined with Sor treatment synergistically inhibited tumor growth in HCC tumor-bearing mice. Immunostaining showed that PFGS combined with Sor treatment significantly decreased the expression of Ki-67 and obviously induced apoptosis in the tumor compared with a single treatment. Similarly, PFGS combined with Sor treatment significantly downregulated the expression of NF-κB, HIF-2α, and SerpinB3 in the tumor compared with a single treatment. Additionally, PFGS combined with Sor markedly inhibited cell proliferation and invasion and activation of the NF-κB/HIF-2α/SerpinB3 pathway in Sor-resistant hepatoma cells compared with a single treatment. Conclusion: Our study demonstrated that PFGS synergistically increased the antiliver cancer effects of Sor by lowering activation of the NF-κB/HIF-2α/SerpinB3 pathway. These findings provided a scientific foundation for clinical studies using PFGS and Sor to treat liver cancer.

19.
Front Pharmacol ; 13: 983470, 2022.
Article in English | MEDLINE | ID: mdl-36133822

ABSTRACT

Citrus fruits are composed of oil cells layer, white membrane layer, pulp and seeds. The cultivar Citrus aurantium 'Changshan-huyou' (CACH) is a hybridization of Citrus grandis Osbeck and C. sinensis Osbeck. It is a rutaceae plant, and mainly grows in Changshan, Zhejiang, China. With the exploration of its high traditional values, it has been paid more and more attention by the scientific community in recent years. At present, one hundred and two chemical constituents have been identified from the pulp and peel of CACH, including volatile oils, terpenoids, phenols, limonins, sugars, etc., As the representative active component of CACH, phenols have been widely investigated. Studies have shown that CACH shows a variety of significant pharmacological activities, such as anti-inflammatory, antioxidant, hepatoprotective activity, respiratory system protection and intestinal regulation activity. This review mainly introduces the chemical constituents and pharmacological activities of CACH, and discusses its future research and development directions. It will provide theoretical basis for further research of its pharmacodynamic substances, functional mechanism and rational utilization.

20.
J Agric Food Chem ; 70(38): 12074-12084, 2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36122177

ABSTRACT

As one of the sources of biodiesel, microalgae are expected to solve petroleum shortage. In this study, different concentrations of piperonyl butoxide were added to the culture medium to investigate their effects on the growth, pigment content, lipid accumulation, and content of carotenoids in Dunaliella tertiolecta. The results showed that piperonyl butoxide addition significantly decreased the biomass, chlorophyll content, and total carotenoid content but hugely increased the lipid accumulation. With the treatment of 150 ppm piperonyl butoxide combined with 8000 Lux light intensity, the final lipid accumulation and single-cell lipid content were further increased by 21.79 and 76.42% compared to those of the control, respectively. The lipid accumulation in D. tertiolecta is probably related to the increased expression of DtMFPα in D. tertiolecta under the action of piperonyl butoxide. The phylogenetic trees of D. tertiolecta and other oil-rich plants were constructed by multiple sequence alignment of DtMFPα, demonstrating their evolutionary relationship, and the tertiary structure of DtMFPα was predicted. In conclusion, piperonyl butoxide has a significant effect on lipid accumulation in D. tertiolecta, which provides valuable insights into chemical inducers to enhance biodiesel production in microalgae to solve the problem of diesel shortage.


Subject(s)
Chlorophyceae , Microalgae , Petroleum , Biofuels , Carotenoids/metabolism , Chlorophyceae/metabolism , Chlorophyll/metabolism , Lipids , Microalgae/chemistry , Petroleum/metabolism , Phylogeny , Piperonyl Butoxide/metabolism , Piperonyl Butoxide/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL