Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 87
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Int J Biol Macromol ; 266(Pt 2): 131383, 2024 May.
Article in English | MEDLINE | ID: mdl-38580030

ABSTRACT

The development of antibiotic-loaded microneedles has been hindered for years by limited excipient options, restricted drug-loading space, poor microneedle formability, and short-term drug retention. Therefore, this study proposes a dissolving microneedle fabricated from the host-defense peptide ε-poly-l-lysine (EPL) as an antibacterial adjuvant system for delivering antibiotics. EPL serves not only as a major matrix material for the microneedle tips, but also as a broad-spectrum antibacterial agent that facilitates the intracellular accumulation of the antibiotic doxycycline (DOX) by increasing bacterial cell membrane permeability. Furthermore, the formation of physically crosslinked networks of EPL affords microneedle tips with improved formability, good mechanical properties, and amorphous nanoparticles (approximately 7.2 nm) of encapsulated DOX. As a result, a high total loading content of both antimicrobials up to 2319.1 µg/patch is achieved for efficient transdermal drug delivery. In a Pseudomonas aeruginosa-induced deep cutaneous infection model, the EPL microneedles demonstrates potent and long-term effects by synergistically enhancing antibiotic activities and prolonging drug retention in infected lesions, resulting in remarkable therapeutic efficacy with 99.91 % (3.04 log) reduction in skin bacterial burden after a single administration. Overall, our study highlights the distinct advantages of EPL microneedles and their potential in clinical antibacterial practice when loaded with amorphous DOX nanoparticles.


Subject(s)
Anti-Bacterial Agents , Doxycycline , Nanoparticles , Needles , Polylysine , Polylysine/chemistry , Doxycycline/administration & dosage , Doxycycline/pharmacology , Doxycycline/chemistry , Nanoparticles/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/chemistry , Animals , Pseudomonas aeruginosa/drug effects , Mice , Drug Delivery Systems , Administration, Cutaneous , Skin/drug effects , Skin/microbiology , Pseudomonas Infections/drug therapy
2.
J Ethnopharmacol ; 326: 117933, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38382653

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The roots and rhizomes of Bergenia purpurascens (Hook. f. et Thomson) Engl., was used as a sunscreen to protect against ultraviolet rays in Tibet of China historically, but its skin whitening constituents and pharmacological effects of this plant remained unknown. AIM OF THE STUDY: To investigate the anti-melanogenesis effect of B. purpurascens in vitro and in vivo, and then explore the preliminary mechanism. MATERIALS AND METHODS: An ultraviolet B (UVB)-induced skin injury model of mice was used to verify the ameliorative effect of B. purpurascens extract (BPE) on ultraviolet damage. Then, alpha-melanocyte stimulating hormone (α-MSH)-induced murine melanoma cell line (B16F10) melanin generation model was further adopted to approval the effects of BPE and its bioactive compound, cuscutin, in vitro. Moreover, α-MSH stimulated melanogenesis model in zebrafish was employed to confirm the anti-pigmentation effect of cuscutin. Then, proteins expressions associated with melanin production were observed using western blotting assay to explore preliminary mechanism. RESULTS: BPE inhibited UVB-induced mice injury and restored skin barrier function observably in vivo. BPE and cuscutin suppressed the overproduction of melanin in α-MSH induced B16F10 significantly, in which cuscutin exhibited better effect than well-known whitening agent α-arbutin at same 10 µg/mL concentration. Moreover, the pigmentation of zebrafish embryo was decreased by cuscutin. Finally, cuscutin showed significant downregulation of expressions of tyrosinase (TYR) and tyrosinase related protein-1 (TRP-1), TRP-2 and microphthalmia-associated transcription factor (MITF) in the melanogenic signaling pathway. CONCLUSION: B. purpurascens extract and its major bioactive constituent, cuscutin, showed potent anti-melanogenesis and skin-whitening effect by targeting TYR and TRP-2 proteins for the first time, which supported its traditional use.


Subject(s)
Melanoma, Experimental , Monophenol Monooxygenase , Animals , Mice , Melanins/metabolism , Zebrafish , alpha-MSH/pharmacology , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Microphthalmia-Associated Transcription Factor/metabolism , Cell Line, Tumor , Melanoma, Experimental/drug therapy
3.
Acta Derm Venereol ; 103: adv11643, 2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37787420

ABSTRACT

In China, there is a lack of data regarding the awareness and treatment preferences among patients with vitiligo and their families. To address this gap, a cross-sectional questionnaire-based study was conducted to investigate disease awareness and treatment preferences in Chinese patients with vitiligo. The study also evaluated willingness to pay, using 2 standardized items, and assessed quality of life, using the Dermatology Life Quality Index (DLQI) score. Data from 307 patients with vitiligo (59.3% women, mean age 28.98 years, range 2-73 years) were analysed. Of these patients, 44.7% had insufficient knowledge of vitiligo, particularly those from rural areas or with low levels of education. Mean DLQI total score was 4.86 (5.24 for women and 4.30 for men). Among the most accepted treatments were topical drugs, phototherapy, and systemic therapy. Patients were relatively conservative about the duration and cost of treatment, with only 27.7% willing to pay more than 10,000 Chinese yuan renminbi (CNY) for complete disease remission. High level of education, high income, skin lesions in specific areas, and skin transplantation therapy predicted higher willingness to pay. Insufficient knowledge was associated with a higher burden of disease. In order to reduce the disease burden and improve treatment adherence it is crucial to enhance disease awareness and take into account patient preferences.


Subject(s)
Vitiligo , Male , Humans , Female , Child, Preschool , Child , Adolescent , Young Adult , Adult , Middle Aged , Aged , Vitiligo/diagnosis , Vitiligo/therapy , Quality of Life , Cross-Sectional Studies , Surveys and Questionnaires , China
4.
ACS Appl Mater Interfaces ; 15(40): 46613-46625, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37782836

ABSTRACT

Psoriasis and diabetes are both common comorbidities for each other, where inflammation and insulin resistance act in a vicious cycle, driving the progression of disease through the activation of the NF-κB signaling pathway. Therefore, disrupting the linkage between inflammation and insulin resistance by inhibiting the NF-κB pathway presents a promising therapeutic strategy for addressing psoriasis-diabetic comorbidity. Herein, an open-loop therapy was developed by integrating microneedle-mediated short- and long-range missiles to target psoriasis and diabetes, respectively. The short-range missile (curcumin nanoparticle) could be stationed in the psoriatic skin for topical and prolonged antipsoriasis therapy, while the long-range missile (metformin) is capable of penetrating transdermal barriers to induce a systemic hypoglycemic effect. More attractively, the short- and long-range missiles could join hands to inhibit the NF-κB signaling pathway and diminish inflammation, effectively disrupting the crosstalk between inflammation and insulin resistance. Pharmacodynamic studies showed that this microneedle-mediated combination, possessing dual anti-inflammatory and antihyperglycemic properties, proves to be highly efficacious in alleviating typical symptoms and inflammatory response in both nondiabetic and diabetic mice with imiquimod (IMQ)-induced psoriasis models. Hence, the microneedle-mediated open-loop therapy shows great potential in the management of psoriasis-diabetes comorbidity.


Subject(s)
Diabetes Mellitus, Experimental , Insulin Resistance , Psoriasis , Animals , Mice , NF-kappa B/metabolism , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Psoriasis/drug therapy , Psoriasis/metabolism , Skin , Inflammation/metabolism , Comorbidity , Mice, Inbred BALB C , Disease Models, Animal
5.
J Med Virol ; 95(8): e28979, 2023 08.
Article in English | MEDLINE | ID: mdl-37522253

ABSTRACT

Traditional Chinese medicine (TCM) is often used as an adjuvant or alternative therapy for abnormal liver biochemistry or liver fibrosis associated with chronic hepatitis B (CHB). However, the role of TCM in HBsAg seroclearance remains unclear. We aimed at exploring the role and possible mechanisms of TCM in HBsAg seroclearance. Fifteen widely used TCM granules invigorating the spleen and kidneys were screened. C57BL/6J mice were administered daily with TCM granules by gavage for 1 week. The effect of TCM on the M1 polarization of macrophages was measured using a CD86 assay. According to the principles of formulating prescriptions, three single TCM with the most noticeable effect on M1 polarization, accompanied by two other TCM granules, were used to develop a TCM formula. The hepatitis B virus-expressing mouse model was constructed by hydrodynamic injection of the pAAV/HBV1.2 plasmid. Hepatitis B virus-expressing mice were gavaged daily with phosphate-buffered saline (PBS), TCM formula, or Codonopsis Radix, for 1 week. HBsAg, HBeAg, and hepatitis B virus DNA levels were measured. In addition, gut microbiota was profiled using 16S rDNA sequencing. Several TCM granules showed significant effects on M1 polarization. The TCM formula accelerated HBsAg seroclearance compared with the Codonopsis Radix and PBS groups. Intrahepatic M1 polarization, as indicated by flow cytometry and immunohistochemistry, was induced in the TCM formula and Codonopsis Radix groups. The abundance of Alloprevotella significantly increased in the TCM formula and Codonopsis Radix groups. These results demonstrate that the TCM formula for invigorating the spleen and kidney can accelerate HBsAg seroclearance. This effect can be attributed, at least in part, to M1 polarization of intrahepatic macrophages.


Subject(s)
Hepatitis B Surface Antigens , Hepatitis B, Chronic , Animals , Mice , Spleen , Medicine, Chinese Traditional , Mice, Inbred C57BL , Hepatitis B virus/genetics , Hepatitis B e Antigens , Kidney , DNA, Viral/genetics
6.
Aging (Albany NY) ; 15(14): 7278-7307, 2023 07 30.
Article in English | MEDLINE | ID: mdl-37517091

ABSTRACT

BACKGROUND: Sagacious Confucius' Pillow Elixir (SCPE) is a common clinical prescription to treat cognitive impairment (CI) in East Asia. OBJECTIVE: To predict the active components of SCPE, identify the associated signaling pathway, and explore the molecular mechanism using systems pharmacology and an animal study. METHODS: Systems pharmacology and Python programming language-based molecular docking were used to select and analyze the active components and targets. Senescence-accelerated prone 8 mice were used as a CI model. The molecular mechanism was evaluated using the water maze test, neuropathological observation, cerebrospinal fluid microdialysis, and Western blotting. RESULTS: Thirty active components were revealed by screening relevant databases and performing topological analysis. Additionally, 376 differentially expressed genes for CI were identified. Pathway enrichment analysis, protein-protein interaction (PPI) network analysis and molecular docking indicated that SCPE played a crucial role in modulating the PI3K/Akt/mTOR signaling pathway, and 23 SCPE components interacted with it. In the CI model, SCPE improved cognitive function, increased the levels of the neurotransmitter 5-hydroxytryptamine (5-HT) and metabolite 5-hydroxyindole acetic acid (5-HIAA), ameliorated pathological damage and regulated the PI3K/AKT/mTOR signaling pathway. SCPE increased the LC3-II/LC3-I, p-PI3K p85/PI3K p85, p-AKT/AKT, and p-mTOR/mTOR protein expression ratios and inhibited P62 expression in the hippocampal tissue of the CI model. CONCLUSION: Our study revealed that 23 active SCPE components improve CI by increasing the levels of the neurotransmitter 5-HT and metabolite 5-HIAA, suppressing pathological injury and regulating the PI3K/Akt/mTOR signaling pathway to improve cognitive function.


Subject(s)
Cognitive Dysfunction , Network Pharmacology , Animals , Mice , Hydroxyindoleacetic Acid , Molecular Docking Simulation , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Serotonin , Cognitive Dysfunction/drug therapy , TOR Serine-Threonine Kinases
7.
Support Care Cancer ; 31(7): 444, 2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37410217

ABSTRACT

OBJECTIVE: To investigate their compliance with postoperative oral nutritional supplementation and nutritional outcomes. METHODS: A total of 84 patients with colorectal cancer surgery with NRS-2002 risk score ≥ 3 who were treated with oral nutritional supplementation were selected and divided into control and observation groups according to the random number table method, with 42 cases in each group. The control group received conventional oral nutritional supplementation and dietary nutrition education; the observation group established a nutrition intervention group based on the Goal Attainment Theory and carried out individualized nutrition education based on the Goal Attainment Theory. The nutritional indicators at 1 day postoperative, 7 days postoperative, oral nutritional supplementation adherence scores at 7 and 14 days postoperative, and the attainment rate of trans-oral nutritional intake at 21 days postoperative were compared between the 2 groups of patients. RESULTS: There was no statistically significant difference between the nutritional status indexes of the 2 groups of patients before the intervention, p > 0.05; when comparing the prealbumin of the 2 groups of patients at 7 days postoperatively, the prealbumin level of the patients in the observation group at 7 days postoperatively (200.25 ± 53.25) was better than that of the control group (165.73 ± 43.00), with a p value of 0.002, and the difference was statistically significant (p < 0.05). Comparison of oral nutritional supplementation adherence scores at 7 and 14 days postoperatively showed that ONS treatment adherence scores were better than those of the control group, with statistically significant differences (p < 0.05). When comparing the attainment rate of oral nutritional intake at 21 days after surgery, the difference was statistically significant (p < 0.05). CONCLUSION: Nutritional education based on the Goal Attainment Theory can effectively improve the adherence to oral nutritional supplementation therapy and protein intake attainment rate of colorectal cancer patients after surgery and effectively improve the nutritional status of patients.


Subject(s)
Colorectal Neoplasms , Nutrition Therapy , Humans , Prealbumin , Goals , Nutritional Status , Dietary Supplements , Colorectal Neoplasms/surgery
8.
J Ethnopharmacol ; 310: 116422, 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-36972781

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Paeonia lactiflora Pall has been used in Chinese Medicine for thousands of years, especially having anti-inflammatory, sedative, analgesic and other ethnic pharmacological effects. Moreover, Paeoniflorin is the main active ingredient of the Paeonia lactiflora Pall, and most are used in the treatment of inflammation-related autoimmune diseases. In recent years, studies have found that Paeoniflorin has a therapeutic effect on a variety of kidney diseases. AIM OF THE STUDY: Cisplatin (CIS) is limited in clinical use due to its serious side effects, such as renal toxicity, and there is no effective method for prevention. Paeoniflorin (Pae) is a natural polyphenol which has a protective effect against many kidney diseases. Therefore, our study is to explore the effect of Pae on CIS-induced AKI and the specific mechanism. MATERIALS AND METHODS: Firstly, CIS induced acute renal injury model was constructed in vivo and in vitro, and Pae was continuously injected intraperitoneally three days in advance, and then Cr, BUN and renal tissue PAS staining were detected to comprehensively evaluate the protective effect of Pae on CIS-induced AKI. We then combined Network Pharmacology with RNA-seq to investigate potential targets and signaling pathways. Finally, affinity between Pae and core targets was detected by molecular docking, CESTA and SPR, and related indicators were detected in vitro and in vivo. RESULTS: In this study, we first found that Pae significantly alleviated CIS-AKI in vivo and in vitro. Through network pharmacological analysis, molecular docking, CESTA and SPR experiments, we found that the target of Pae was Heat Shock Protein 90 Alpha Family Class A Member 1 (Hsp90AA1) which performs a crucial function in the stability of many client proteins including Akt. RNA-seq found that the KEGG enriched pathway was PI3K-Akt pathway with the most associated with the protective effect of Pae which is consistent with Network Pharmacology. GO analysis showed that the main biological processes of Pae against CIS-AKI include cellular regulation of inflammation and apoptosis. Immunoprecipitation further showed that pretreatment with Pae promoted the Hsp90AA1-Akt protein-protein Interactions (PPIs). Thereby, Pae accelerates the Hsp90AA1-Akt complex formation and leads to a significant activate in Akt, which in turn reduces apoptosis and inflammation. In addition, when Hsp90AA1 was knocked down, the protective effect of Pae did not continue. CONCLUSION: In summary, our study suggests that Pae attenuates cell apoptosis and inflammation in CIS-AKI by promoting Hsp90AA1-Akt PPIs. These data provide a scientific basis for the clinical search for drugs to prevent CIS-AKI.


Subject(s)
Acute Kidney Injury , Cisplatin , Humans , Cisplatin/adverse effects , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Molecular Docking Simulation , Acute Kidney Injury/chemically induced , Acute Kidney Injury/drug therapy , Acute Kidney Injury/prevention & control , Inflammation/chemically induced , HSP90 Heat-Shock Proteins/therapeutic use
9.
Zhongguo Zhong Yao Za Zhi ; 48(1): 82-95, 2023 Jan.
Article in Chinese | MEDLINE | ID: mdl-36725261

ABSTRACT

With the approach of untargeted metabolomics and correlation analysis, this study aimed to explore the mechanism of Aurantii Fructus from Lingnan region in alleviating dryness by analyzing the different effects of raw Aurantii Fructus(RAF) and processed Aurantii Fructus(PAF) on fecal endogenous metabolism in normal rats. Eighteen Sprague-Dawley(SD) rats were randomly divided into a control group(C), an RAF group(10 g·kg~(-1)), and a PAF group(10 g·kg~(-1)). After seven days of administration, the effects of RAF and PAF on dryness-related indexes were compared, including water intake, fecal water content, salivary secretion, the expression of AQP5, VIP, and 5-HT in the submandibular gland, as well as the expression of AQP3, VIP, and 5-HT in the colon. The fecal samples in each group were determined by LC-MS. Multivariate statistical analysis and Pearson correlation coefficient were used for screening the differential metabolites and metabolic pathways in alleviating dryness of RAF. The results indicated that both RAF and PAF showed certain dryness, and the dryness of RAF was more significant. Moreover, PAF could alleviate dryness of RAF to a certain extent by reducing the water intake, fecal water content, and the expression of AQP3, VIP, and 5-HT in the colon and increasing the salivary secretion and the levels of AQP5, VIP, and 5-HT in the submandibular gland. According to the analysis of fecal metabolomics, 99 and 58 metabolites related to dryness were found in RAF and PAF respectively, where 16 of them played an important role in alleviating dryness of RAF. Pathway analysis revealed that the mechanism of PAF in alleviating dryness of RAF was presumably related to the regulation of riboflavin metabolism, purine metabolism, arginine biosynthesis, pyrimidine metabolism, alanine metabolism, aspartate metabolism, glutamate metabolism, and retinol metabolism pathways. This study suggested that PAF might alleviate dryness of RAF by affecting the metabolic levels of the body, which provides a new basis for further clarifying the processing mechanism of PAF.


Subject(s)
Drugs, Chinese Herbal , Rats , Animals , Drugs, Chinese Herbal/pharmacology , Rats, Sprague-Dawley , Serotonin , Metabolomics , Water
10.
Int Immunopharmacol ; 116: 109754, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36753983

ABSTRACT

The pathophysiological mechanism of acute kidney injury (AKI) is complicated, and effective drugs are still lacking. Ferroptosis is a newly discovered regulatory cell death mode characterized by the lethal accumulation of iron and reactive oxygen species-(ROS-)-dependent lipid hydroperoxides. In recent years, ferroptosis has been confirmed to be involved in the progression of AKI. Paeoniflorin (PF) is a traditional Chinese medicine that has protective effects on a variety of kidney diseases including AKI. However, the mechanism by which PF attenuates AKI is unclear. We detected that PF attenuated serum biochemical markers, histological damage, ferroptosis and inflammation in a dose-dependent manner in a mouse AKI model with bilateral renal artery ischemia-reperfusion (IR). Hypoxia-reoxygenation (HR)-induced ferroptosis and inflammation was also inhibited by PF in human renal tubular epithelial cells (HK2). RNA sequence analysis revealed that PF inhibited ferroptosis in HK2 cells by upregulating Slc7a11 in the glutathione pathway after HR treatment. PF failed to further protect cells with specific knockdown of Slc7a11 from ferroptosis under HR conditions. Consequently, these data indicated that PF prevention of ferroptosis in AKI requires dependence on Slc7a11. This study provided a scientific basis for the clinical search for drugs to prevent IR induced AKI.


Subject(s)
Acute Kidney Injury , Ferroptosis , Reperfusion Injury , Animals , Humans , Mice , Acute Kidney Injury/drug therapy , Amino Acid Transport System y+ , Disease Models, Animal , Hypoxia , Inflammation , Ischemia , Reperfusion Injury/drug therapy
11.
Article in Chinese | WPRIM | ID: wpr-970504

ABSTRACT

With the approach of untargeted metabolomics and correlation analysis, this study aimed to explore the mechanism of Aurantii Fructus from Lingnan region in alleviating dryness by analyzing the different effects of raw Aurantii Fructus(RAF) and processed Aurantii Fructus(PAF) on fecal endogenous metabolism in normal rats. Eighteen Sprague-Dawley(SD) rats were randomly divided into a control group(C), an RAF group(10 g·kg~(-1)), and a PAF group(10 g·kg~(-1)). After seven days of administration, the effects of RAF and PAF on dryness-related indexes were compared, including water intake, fecal water content, salivary secretion, the expression of AQP5, VIP, and 5-HT in the submandibular gland, as well as the expression of AQP3, VIP, and 5-HT in the colon. The fecal samples in each group were determined by LC-MS. Multivariate statistical analysis and Pearson correlation coefficient were used for screening the differential metabolites and metabolic pathways in alleviating dryness of RAF. The results indicated that both RAF and PAF showed certain dryness, and the dryness of RAF was more significant. Moreover, PAF could alleviate dryness of RAF to a certain extent by reducing the water intake, fecal water content, and the expression of AQP3, VIP, and 5-HT in the colon and increasing the salivary secretion and the levels of AQP5, VIP, and 5-HT in the submandibular gland. According to the analysis of fecal metabolomics, 99 and 58 metabolites related to dryness were found in RAF and PAF respectively, where 16 of them played an important role in alleviating dryness of RAF. Pathway analysis revealed that the mechanism of PAF in alleviating dryness of RAF was presumably related to the regulation of riboflavin metabolism, purine metabolism, arginine biosynthesis, pyrimidine metabolism, alanine metabolism, aspartate metabolism, glutamate metabolism, and retinol metabolism pathways. This study suggested that PAF might alleviate dryness of RAF by affecting the metabolic levels of the body, which provides a new basis for further clarifying the processing mechanism of PAF.


Subject(s)
Rats , Animals , Drugs, Chinese Herbal/pharmacology , Rats, Sprague-Dawley , Serotonin , Metabolomics , Water
12.
3 Biotech ; 12(11): 298, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36276479

ABSTRACT

Some species of the genus Brevibacterium are orange bacteria involved in cheese ripening, synthesis of odoriferous compounds, and carotenoids with aromatic end groups. Here, we report the genome sequence of Brevibacterium sp. XU54, isolated from radioactive soil in Xinjiang, China. The genome of XU54 consists of 4,899,099 base pairs with a GC content of 62.2%. The genome sequence was annotated with 4453 genes, encoding 4260 proteins, 13 rRNAs, and 49 tRNAs. 16S rRNA BLAST and comparative genomic analysis both indicated that XU54 may be a new species of Brevibacterium. In addition, compared to the type strains, some enzymes related to sulfur metabolism showed a low similarity of 66.85, 79.53 and 14.61%, respectively. The carotenoids biosynthesis gene cluster was identified and analyzed according to the genomic data, which revealed relatively low identity (5-85%) with existing strains. The optimum conditions for its growth and carotenoid production were then discussed. The whole-genome sequence of Brevibacterium sp. XU54 will be beneficial for utilizing these newly identified genes in carotenoid biosynthesis and regulation of sulfur metabolism pathway to promote the production of novel carotenoids and other structurally diverse compounds through combinatorial biosynthesis, which facilitates cheese ripening and coloration. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-022-03366-1.

13.
Phytomedicine ; 106: 154400, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36049428

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Paeoniflorin (PF) was found to exhibit renal protection from diabetic kidney disease (DKD) in previous trials, but its specific mechanism remains to be elucidated. AIM OF THE STUDY: This study furtherly explored the specific mechanism of PF in protect podocyte injury in DKD. MATERIALS AND METHODS: We observed the effects of PF on renal tissue and podocytes in DKD by constructing the vitro and vivo models after measuring the pharmacokinetic characteristics of PF. Target proteins of PF were found through target prediction, and verified by molecular docking, CESTA, and SPR, and then furtherly explored the downstream regulation mechanism related to podocyte autophagy and apoptosis by network prediction and co-immunoprecipitation. Finally, by using the target protein inhibitor in vivo and knocking down the target protein gene in vitro, it was verified that PF played a role in regulating autophagy and apoptosis through the target protein in diabetic nephropathy. RESULTS: This study found that in STZ-induced mice model, PF could improve the renal biochemical and pathological damage and podocyte injure (p < 0.05), upregulate autophagy activity (p < 0.05), but inhibit apoptosis (p < 0.01). Vascular endothelial growth factor receptor 2 (VEGFR2), predicted as the target of PF, directly bind with PF reflected by molecular docking and surface plasmon resonance detection. Animal studies demonstrated that VEGFR2 inhibitors have a protective effect similar to that of PF on DKD. Network prediction and co-immunoprecipitation further confirmed that VEGFR2 was able to bind PIK3CA to regulate PI3K-AKT signaling pathway. Furthermore, PF downregulated the phosphorylation of PI3K and AKT (p < 0.05). In vitro, similarly to autophagy inhibitors, PF was also found to improve podocyte markers (p < 0.05) and autophagy activity (p < 0.05), decrease caspase 3 protein (p < 0.05) and further inhibited VEGFR2-PI3K-AKT activity (p < 0.05). Finally, the results of VEGFR2 knockdown were similar to the effect of PF in HG-stimulated podocytes. CONCLUSION: In conclusion, PF restores autophagy and inhibits apoptosis by targeting the VEGFR2-mediated PI3K-AKT pathway to improve renal injury in DKD, that provided a theoretical basis for PF treatment in DKD.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Podocytes , Animals , Apoptosis , Autophagy , Caspase 3/metabolism , Class I Phosphatidylinositol 3-Kinases/metabolism , Class I Phosphatidylinositol 3-Kinases/therapeutic use , Diabetic Nephropathies/metabolism , Glucosides , Mice , Molecular Docking Simulation , Monoterpenes , Phosphatidylinositol 3-Kinases/metabolism , Podocytes/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism
14.
Zhongguo Zhong Yao Za Zhi ; 47(12): 3380-3385, 2022 Jun.
Article in Chinese | MEDLINE | ID: mdl-35851132

ABSTRACT

The lack of rationality evaluation method for drug combination has long restricted its clinical application. In view of this, this study took Shuanghuanglian Injection as model drug and established a "physical-chemical-biological" sequential analysis method, which is expected to provide clues for improving the safety and effectiveness of clinical drug combination. With the methods of insoluble particle testing, isothermal titration calorimetry(ITC), and real time cellular analysis(RTCA), the rationality of Shuanghuanglian Injection combined with Ampicillin Sodium for Injection was assessed. The results showed that the number of insoluble particles>10 µm in the solution of the combination met the standard of Chinese Pharmacopoeia, while the number of insoluble particles>25 µm did not meet the standard. ITC detection demonstrated that the change of Gibbs free energy(ΔG) was less than 0 during the fusion process, indicating that the process was spontaneous and enthalpy-driven reaction. Therefore, the interaction between the two was mainly chemical reaction, and the internal substances may change. RTCA found that Shuanghuanglian Injection alone and Ampicillin Sodium for Injection alone basically had no inhibitory effect on the growth of HEK293 T cells, while the combination of the two suppressed the growth of HEK293 T cells, suggesting that the combination was toxic to HEK293 T cells. This study showed that Shuanghuanglian Injection and Ampicillin Sodium for Injection reacted, yielding toxicity. This suggested that the two should not be combined for application. With the "physical-chemical-biological" sequential analysis, the molecular interaction of drugs was clarified. The method can be further applied for evaluating the rationality of other Chinese and western medicine injections.


Subject(s)
Ampicillin , Drugs, Chinese Herbal , Ampicillin/pharmacology , Calorimetry , Drug Combinations , Drugs, Chinese Herbal/chemistry , HEK293 Cells , Humans , Injections
15.
Article in English | MEDLINE | ID: mdl-35747374

ABSTRACT

This prospective randomized controlled study was intended to assess the effects of different doses of clopidogrel plus early rehabilitation therapy on motor function and inflammatory factors in patients with ischemic stroke. Between August 2018 and October 2020, 90 cases of ischemic stroke treated in the Second People's Hospital of Yibin were randomized at a ratio of 1 : 1 to receive either oral 50 mg/d clopidogrel plus early rehabilitation therapy (low-dose group) or oral 75 mg/d clopidogrel plus early rehabilitation therapy (high-dose group), with 45 cases in each group. The outcome measures including the Barthel Index (BI), National Institutes of Health Stroke Scale (NIHSS), Fugl-Meyer simplified scale, hypersensitive C-reactive protein (hs-CRP), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and occurrence of adverse events were collected. After treatment, the high-dose group had higher BI results than the low-dose group. All eligible patients showed significantly declined NIHSS scores, and the high-dose group had markedly lower results (P < 0.05). After treatment, the Fugl-Meyer scores of both upper and lower extremities of the high-dose group were significantly higher than those in the low-dose group. The high-dose group achieved a greater decrease in inflammatory factor levels after treatment versus the low-dose group. The two groups showed a similar incidence of adverse events. High-dose clopidogrel plus early rehabilitation outperforms the low-dose treatment for patients with ischemic stroke by effectively mitigating the inflammatory response in the body, promoting the restoration of neurological function, improving the level of motor function, and enhancing the patient's quality of life, with manageable safety.

16.
Genes (Basel) ; 13(2)2022 01 30.
Article in English | MEDLINE | ID: mdl-35205325

ABSTRACT

Root restriction (RR) has been reported to enhance grape berry quality in diverse aspects of grape life. In this study, RR-induced increases in the main primary metabolites in the grape berry and the expression of their related genes were studied at different developmental stages. Mainly the transcriptomic and metabolomic level were analyzed using 'Summer Black' grape berry as a material. The main results were as follows: A total of 11 transcripts involved in the primary metabolic pathways were significantly changed by the RR treatment. Metabolites such as sugars, organic acids, amino acids, starch, pectin, and cellulose were qualitatively and quantitatively analyzed along with their metabolic pathways. Sucrose synthase (VIT_07s0005g00750, VIT_11s0016g00470) and sucrose phosphate synthase (VIT_18s0089g00410) were inferred to play critical roles in the accumulation of starch, sucrose, glucose, and fructose, which was induced by the RR treatment. RR treatment also promoted the malic acid and tartaric acid accumulation in the young berry. In addition, the grape berries after the RR treatment tended to have lower pectin and cellulose content.


Subject(s)
Vitis , Cellulose/metabolism , Fruit , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Pectins/metabolism , Starch/analysis , Transcriptome/genetics , Vitis/metabolism
17.
Chin J Nat Med ; 20(1): 9-21, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35101253

ABSTRACT

ß-Elemene is an effective anti-cancer ingredient extracted from the genus Curcuma (Zingiberaceae familiy). In the present study, we demonstrated that ß-elemene inhibited the proliferation of colorectal cancer cells and induced cell cycle arrest in the G2/M phase. In addition, ß-elemene induced nuclear chromatin condensation and cell membrane phosphatidylserine eversion, decreased cell mitochondrial membrane potential, and promoted the cleavage of caspase-3, caspase-9 and PARP proteins, indicating apoptosis in colorectal cancer cells. At the same time, ß-elemene induced autophagy response, and the treated cells showed autophagic vesicle bilayer membrane structure, which was accompanied by up-regulation of the expression of LC3B and SQSTM1. Furthermore, ß-elemene increased ROS levels in colorectal cancer cells, promoted phosphorylation of AMPK protein, and inhibited mTOR protein phosphorylation. In the experiments in vivo, ß-elemene inhibited the tumor size and induced apoptosis and autophagy in nude mice. In summary, ß-elemene inhibited the occurrence and development of colon cancer xenografts in nude mice, and significantly induced apoptosis and autophagy in colorectal cancer cells in vitro. These effects were associated with regulation of the ROS/AMPK/mTOR signaling. We offered a molecular basis for the development of ß-elemene as a promising anti-tumor drug candidate for colorectal cancer.


Subject(s)
AMP-Activated Protein Kinases , Colorectal Neoplasms , AMP-Activated Protein Kinases/genetics , Animals , Apoptosis , Autophagy , Cell Line, Tumor , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Humans , Mice , Mice, Nude , Reactive Oxygen Species , Sesquiterpenes , TOR Serine-Threonine Kinases/genetics
18.
Front Pharmacol ; 13: 1096137, 2022.
Article in English | MEDLINE | ID: mdl-36699051

ABSTRACT

PM2.5 is an important environmental problem threatening human health at present, which poses serious harm to human body after inhalation. J. cannabifolia is a traditional Chinese medicine which exhibits anti-inflammatory effect. This study aimed to investigate the inhibitory effect of main phenolic acid components of J. cannabifolia on inflammation caused by PM2.5. Effect of PM2.5 on cell activity and apoptosis were determined by MTT, flow cytometry and calcein AM/PI staining. PHBA, PHPAA, and mixture of PHBA and PHPAA of different concentrations were given to RAW264.7 cells pretreated with PM2.5. The effect of drugs on cellular inflammatory factors was detected by ELISA. The expressions of TLRs related signal pathway at protein and gene levels were detected by western blot and qRT-PCR. The results showed that PM2.5 had no effect on cell activity and apoptosis within the determined concentration range. PHBA and PHPAA could markly inhibit the level of IL-1ß, IL-6, and TNF-α in RAW264.7 cells. Furthermore, the expressions of TLR2, TLR4, MyD88, IRAK1, TRAF6, TAK1, IKKß, and NF-κB induced by PM2.5 were markedly inhibited by PHBA and PHPAA at protein and gene levels. This study demonstrated that PHBA and PHPAA could attenuated inflammation caused by PM2.5 through suppressing TLRs related signal pathway.

19.
Acta Pharmacol Sin ; 43(1): 96-110, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34253875

ABSTRACT

Diabetic kidney disease (DKD) is one of the microvascular complications of diabetes mellitus and a major cause of end-stage renal disease with limited treatment options. Wogonin is a flavonoid derived from the root of Scutellaria baicalensis Georgi, which has shown a potent renoprotective effect. But the mechanisms of action in DKD are not fully elucidated. In this study, we investigated the effects of wogonin on glomerular podocytes in DKD using mouse podocyte clone 5 (MPC5) cells and diabetic mice model. MPC5 cells were treated with high glucose (30 mM). We showed that wogonin (4, 8, 16 µM) dose-dependently alleviated high glucose (HG)-induced MPC5 cell damage, accompanied by increased expression of WT-1, nephrin, and podocin proteins, and decreased expression of TNF-α, MCP-1, IL-1ß as well as phosphorylated p65. Furthermore, wogonin treatment significantly inhibited HG-induced apoptosis in MPC5 cells. Wogonin reversed HG-suppressed autophagy in MPC5 cells, evidenced by increased ATG7, LC3-II, and Beclin-1 protein, and decreased p62 protein. We demonstrated that wogonin directly bound to Bcl-2 in MPC5 cells. In HG-treated MPC5 cells, knockdown of Bcl-2 abolished the beneficial effects of wogonin, whereas overexpression of Bcl-2 mimicked the protective effects of wogonin. Interestingly, we found that the expression of Bcl-2 was significantly decreased in biopsy renal tissue of diabetic nephropathy patients. In vivo experiments were conducted in STZ-induced diabetic mice, which were administered wogonin (10, 20, 40 mg · kg-1 · d-1, i.g.) every other day for 12 weeks. We showed that wogonin administration significantly alleviated albuminuria, histopathological lesions, and p65 NF-κB-mediated renal inflammatory response. Wogonin administration dose-dependently inhibited podocyte apoptosis and promoted podocyte autophagy in STZ-induced diabetic mice. This study for the first time demonstrates a novel action of wogonin in mitigating glomerulopathy and podocytes injury by regulating Bcl-2-mediated crosstalk between autophagy and apoptosis. Wogonin may be a potential therapeutic drug against DKD.


Subject(s)
Diabetic Nephropathies/drug therapy , Drugs, Chinese Herbal/pharmacology , Flavanones/pharmacology , Kidney Glomerulus/drug effects , Podocytes/drug effects , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Animals , Apoptosis/drug effects , Autophagy/drug effects , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Dose-Response Relationship, Drug , Drugs, Chinese Herbal/administration & dosage , Flavanones/administration & dosage , Injections, Intraperitoneal , Kidney Glomerulus/metabolism , Male , Mice , Mice, Inbred C57BL , Molecular Structure , Podocytes/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Structure-Activity Relationship
20.
Acta Pharmaceutica Sinica ; (12): 1471-1476, 2022.
Article in Chinese | WPRIM | ID: wpr-924753

ABSTRACT

The joint application of traditional Chinese medicine injection containing chlorogenic acid (CA) and cefotaxime sodium (CS) is sometimes appeared in clinical practice, but the scientific basis of drug molecular compatibility is still weak. This study proposes a sequential analysis strategy based on isothermal titration calorimetry (ITC), cold-spray ionization mass spectrometry (CSI-MS) and antibacterial activity test to evaluate the molecular interactions between CA and CS. The results of ITC experiments showed that the Gibbs free energy ΔG < 0 and it was driven by enthalpy change when CA titrated CS, suggesting CA could spontaneously chemically react with CS. Subsequently, the parent ions (m/z 808.143 5) of binding molecular of CA and CS was detected by CSI-MS, indicating CA could chemically bond with CS. Furtherly, the antibacterial experiments found the antibacterial ability of CS against Klebsiella pneumonia was significantly reduced (P < 0.01) by CA in mixed solution. Finally, molecular docking technology showed CA and CS have a common target of penicillin binding protein 3 (PBP3), suggesting that the phenomenon of CA reduced the antibacterial ability of CS may be related to the competitive binding of two components with PBP3. Our studies have shown that CA could spontaneously chemically bond to CS and reduced its antibacterial ability, providing scientific data for molecular interaction evaluation of CA and CS.

SELECTION OF CITATIONS
SEARCH DETAIL