Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Biomed Pharmacother ; 174: 116467, 2024 May.
Article in English | MEDLINE | ID: mdl-38531120

ABSTRACT

In this study, Senescence Accelerated Mice (SAMP8) were supplemented with exogenous DHA milk, endogenous DHA milk, normal milk, or 0.9 % saline solution. Enzyme-linked immunosorbent assay (ELISA), gas chromatography (GC), ultra-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC-ESI MS/MS), and Morris water maze were used to characterize the effects of diet on oxidative stress and cognition in SAMP8 mice. Supplementation endogenous DHA milk or exogenous DHA milk can enhance the antioxidant capacity of mice organs. Endogenous DHA milk increased the superoxide dismutase (SOD) activity of mice brain and serum than normal milk and 0.9 % saline solution (P ≤ 0.05), as well as increased SOD activity of mice liver and glutathione peroxidase (GSH-Px) activity of mice brain than normal milk (P ≤ 0.05). Exogenous DHA milk increased SOD activity of mice brain than normal milk and 0.9 % saline solution, as well as increased SOD activity of mice serum than 0.9 % saline solution (P ≤ 0.05). Several polar lipid relative content, such as 18:0/18:2 PS, 17:0 Ceramide, and 20:4 LPC in mice brain was affected by dietary supplementation with DHA-containing milk. Lipid oxidation metabolites in mice brain were not affected by DHA-containing milk. Endogenous DHA milk increased the number of platform location crossing times of mice in the Morris water maze test, compared with Exogenous DHA milk, normal milk, and 0.9 % saline solution (P ≤ 0.05).


Subject(s)
Antioxidants , Cognition , Docosahexaenoic Acids , Milk , Oxidative Stress , Superoxide Dismutase , Animals , Oxidative Stress/drug effects , Docosahexaenoic Acids/pharmacology , Cognition/drug effects , Milk/chemistry , Mice , Superoxide Dismutase/metabolism , Male , Antioxidants/metabolism , Antioxidants/pharmacology , Brain/metabolism , Brain/drug effects , Glutathione Peroxidase/metabolism , Dietary Supplements , Maze Learning/drug effects , Liver/metabolism , Liver/drug effects
2.
Food Funct ; 14(7): 3092-3106, 2023 Apr 03.
Article in English | MEDLINE | ID: mdl-36919678

ABSTRACT

Calcium deficiency can lead to osteoporosis. Adequate calcium intake can improve calcium deficiency and prevent osteoporosis. Milk powder is the best source of dietary calcium supplements. Probiotics and prebiotics are considered to be beneficial substances for promoting calcium absorption. In this study, synbiotic milk powder (SMP) was prepared by combining the three, and its calcium supplementation effect and osteogenic activity were evaluated in calcium deficient mice. Through prebiotic screening experiments in vitro, after adding 1.2% iso-malto-oligosaccharide, the number of viable bacteria and the calcium enrichment of Lactobacillus plantarum JJBYG12 increased by 8.15% and 94.53% compared with those of the control group. Long-term calcium deficiency led to a significant reduction in calcium absorption and bone calcium content in mice, accompanied by structural deterioration of bone trabeculae. SMP significantly improved apparent calcium absorption, increased serum calcium and phosphorus levels, and decreased ALP activity and CTX-1 levels. In the meantime, the bone mineral density increased significantly, and the number of bone trabeculae and the proliferation and differentiation of osteoblasts also increased. SMP has good dietary calcium supplementation capacity and bone remodeling ability without significant side effects on major organs. These findings provide insights into using SMP as a dietary calcium source to improve bone health.


Subject(s)
Osteoporosis , Synbiotics , Mice , Animals , Calcium, Dietary , Calcium/analysis , Powders/analysis , Milk/chemistry , Osteoporosis/prevention & control , Bone Density , Prebiotics/analysis
3.
Food Funct ; 14(5): 2385-2391, 2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36779540

ABSTRACT

Background: Docosahexaenoic acid (DHA, C22:6) is an important fatty acid in breast milk and is essential for infantile growth and cognitive development. However, the factors that affect the DHA concentration in breast milk have not been completely clarified. Objective: This study aimed to characterize the composition of breast milk fatty acids and to identify maternal factors associated with breast milk DHA concentration in postpartum women in Wuhan, China. Methods: In this cross-sectional study, we analyzed milk fatty acids in 115 lactating women at 30-120 days postpartum using GC-MS. Maternal sociodemographic, health and other information were collected using a self-reported questionnaire. Maternal dietary intake information was collected through a 24-hour dietary recall method. Postpartum depression status was identified using the Edinburgh Postnatal Depression Scale (EPDS). Results: The mean DHA proportion in breast milk was 0.49%. The multivariate regression model showed that the milk DHA proportion was positively associated with maternal aquatic product intake (ß = 0.183, 95%CI: 0.052, 0.314) and DHA supplement use (ß = 0.146, 95%CI: 0.108, 0.185), and negatively associated with postpartum depression status (ß = -0.122, 95%CI: -0.243, -0.002) after adjustment for several maternal and infant factors. Conclusion: Increasing maternal aquatic product intake and DHA supplement use and improving postpartum depression status may increase DHA concentration in breast milk in lactating women.


Subject(s)
Depression, Postpartum , Milk, Human , Infant , Female , Humans , Docosahexaenoic Acids , Lactation , Depression, Postpartum/epidemiology , Cross-Sectional Studies , Depression , Postpartum Period , Eating , Fatty Acids
4.
Phytopathology ; 113(2): 194-205, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36173282

ABSTRACT

Because effective control measures are lacking, tea leaf spot caused by Didymella segeticola results in huge tea (Camellia sinensis) production losses on tea plantations in Guizhou Province, southwestern China. Screening for natural antimicrobial agents with higher control effects against this pathogen and studying their modes of action may contribute to disease management. Here, Penicillium griseofulvum-derived antimicrobial griseofulvin (GSF) can inhibit the hyphal growth of D. segeticola strain GZSQ-4, with a half-maximal effective concentration of 0.37 µg/ml in vitro and a higher curative efficacy at a lower dose of 25 µg/ml for detached tea twigs. GSF induces deformed and slightly curly hyphae with enlarged ends, with protoplasts agglutinated in the hyphae, and higher numbers of hyphal protuberances. GSF alters hyphal morphology and the subcellular structure's order. The integrated transcriptome and proteome data revealed that the transport of materials in cells, cellular movement, and mitosis were modulated by GSF. Molecular docking indicated that beta-tubulin was the most potent target of GSF, with a binding free energy of -13.59 kcal/mol, and microscale thermophoresis indicated that the dissociation constant (Kd) value of GSF binding to beta-tubulin 1, compared with beta-tubulin 2, was significantly lower. Thus, GSF potentially targets beta-tubulin 1 to disturb the chromosomal separation and fungal mitosis, thereby inhibiting hyphal growth.


Subject(s)
Anti-Infective Agents , Camellia sinensis , Griseofulvin/chemistry , Tubulin/genetics , Proteome , Molecular Docking Simulation , Transcriptome , Plant Diseases/prevention & control , Plant Diseases/microbiology , Tea , Camellia sinensis/microbiology
6.
Phytopathology ; 112(9): 1894-1906, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35322715

ABSTRACT

Because of the lack of effective disease management measures, tea leaf spot-caused by the fungal phytopathogen Didymella segeticola (syn. Phoma segeticola)-is an important foliar disease. The important and widely used agricultural antimicrobial kasugamycin (Ksg), produced by the Gram-positive bacterium Streptomyces kasugaensis, effects high levels of control against crop diseases. The results of this study indicated that Ksg could inhibit the growth of D. segeticola hyphae in vitro with a half-maximal effective concentration (EC50) of 141.18 µg ml-1. Meanwhile, the curative effect in vivo on the pathogen in detached tea leaves also demonstrated that Ksg induced some morphological changes in organelles, septa, and cell walls as observed by optical microscopy and by scanning and transmission electron microscopy. This may indicate that Ksg disturbs biosynthesis of key metabolites, inhibiting hyphal growth. Integrated transcriptomic, proteomic, and bioinformatic analyses revealed that differentially expressed genes or differentially expressed proteins in D. segeticola hyphae in response to Ksg exposure were involved with metabolic processes and biosynthesis of secondary metabolites. Molecular docking studies indicated that Ksg may target nitrate reductase (NR), and microscale thermophoresis assay showed greater affinity with NR, potentially disturbing nitrogen assimilation and subsequent metabolism. The results indicated that Ksg inhibits the pathogen of tea leaf spot, D. segeticola, possibly by binding to NR, disturbing fungal metabolism, and inducing subsequent changes in hyphal growth and development.


Subject(s)
Plant Diseases , Proteomics , Aminoglycosides , Anti-Bacterial Agents/pharmacology , Ascomycota , Molecular Docking Simulation , Nitrate Reductase , Plant Diseases/prevention & control , Tea
7.
Plant Dis ; 106(4): 1286-1290, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34433319

ABSTRACT

Tea leaf spot, caused by Didymella segeticola, is an important disease which negatively affects the productivity and the quality of tea leaves. During infection by the pathogen, competing endogenous RNAs (ceRNAs) from tea leaves could contribute to achieving pathogenicity. In this study, circular RNAs (circRNAs) and long noncoding RNAs (lncRNAs), constituting ceRNAs, which share binding sites on microRNAs (miRNAs), and messenger RNAs (mRNAs) from infected and uninfected leaves of tea (Camellia sinensis 'Fuding-dabaicha') were sequenced and analyzed, and the identity and expression levels of the target genes of miRNA-mRNA and miRNA-lncRNA/circRNA were predicted. Analysis indicated that 10 mRNAs were bound by 20 miRNAs, 66 lncRNAs were bound by 40 miRNAs, and 17 circRNAs were bound by 29 miRNAs, respectively. For the regulation modes of ceRNAs, five ceRNA pairs were identified by the correlation analysis of lncRNA-miRNA-mRNA. For instance, expression of the xyloglucan endotransglycosylase gene in infected leaves was downregulated at the level of mRNA through miRNA PC-5p-3511474_3 binding with lncRNA TEA024202.1:MSTRG.37074.1. Gene annotation indicated that expression of this gene was significantly enriched in cell wall biogenesis and in the pathway of plant hormone signal transduction. The functional analysis of ceRNAs isolated from infected tea leaves will provide a valuable resource for future research on D. segeticola pathogenicity.


Subject(s)
MicroRNAs , RNA, Long Noncoding , Ascomycota , MicroRNAs/genetics , RNA, Circular/genetics , RNA, Long Noncoding/genetics , RNA, Messenger/genetics , Tea
8.
Phytopathology ; 111(12): 2238-2249, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33881912

ABSTRACT

Tea leaf spot, caused by the fungal phytopathogen Didymella segeticola, is an important foliar disease that can cause huge losses in the production and quality of tea, and there are no effective management measures to control the disease. This study screened a natural antimicrobial chemical for its activity against D. segeticola and studied its mode of action. Antifungal activity of the Streptomyces-derived antimicrobial zhongshengmycin (ZSM) against D. segeticola strain GZSQ-4 was assayed in vitro via the mycelial growth rate method. Optical microscopy and scanning and transmission electron microscopy were used to observe the morphological effects on hyphae treated with ZSM, with these studies complemented by transcriptomic, proteomic, and bioinformatic studies to identify the differentially expressed genes or differentially expressed proteins in hyphae treated with ZSM. Correlation analysis of transcriptomic and proteomic data were used to reveal the mode of action. The results indicated that ZSM could inhibit the growth of hyphae in vitro with a half-maximal effective concentration of 5.9 µg/ml, inducing some morphological changes in organelles, septa, and extracellular polysaccharides, targeting ribosomes to disturb translation, affecting the biosynthesis of some hyphal proteins at the messenger RNA and protein levels, and revealing correlations between findings from transcriptomes and proteomes.


Subject(s)
Proteomics , Transcriptome , Antifungal Agents/pharmacology , Ascomycota , Plant Diseases , Tea
9.
Mol Plant Microbe Interact ; 34(8): 922-938, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33822647

ABSTRACT

Diseases caused by fungi can affect the quality and yield of the leaves of tea [Camellia sinensis (L.) Kuntze]. At present, the availability of highly effective and safe fungicides for controlling tea plants remains limited. The objectives of this study were to identify novel compounds with antifungal activities and to determine their molecular mechanisms. A series of sulfone compounds containing 1,3,4-oxadiazole were evaluated in China for their antifungal activities against several pathogens causing foliar diseases and high production losses. Transcriptomics and bioinformatics were used to analyze the differentially expressed genes of Lasiodiplodia theobromae treated with a representative compound, jiahuangxianjunzuo (JHXJZ). Moreover, the effects of JHXJZ on ergosterol content, membrane permeability, cell structure, and seven key genes involved in the ergosterol biosynthetic pathway were investigated. JHXJZ had a strong antifungal activity against L. theobromae in vitro, with an effective concentration giving 50% inhibition of 3.54 ± 0.55 µg/ml, and its curative efficacies on detached tea leaves reached 41.78% at 100 µg/ml. JHXJZ upregulated 899 genes (P < 0.05) and downregulated 1,185 genes (P < 0.05) in L. theobromae. These genes were found to be associated with carbohydrate metabolic processes, which are closely related to steroid biosynthesis in the Kyoto Encyclopedia of Genes and Genomes pathways. Because JHXJZ regulates the key genes of sterol biosynthesis, it decreased the ergosterol content, increased cell-membrane permeability, changed the cellular structure, enhanced the roughness of the surface of the hyphae, and resulted in degradation of the hyphal nuclei and necrosis of the hyphal cytoplasm. Our study demonstrates that JHXJZ is a fungicide with a novel mechanism of action that differs from that of triazole fungicides. JHXJZ has potential for applications in controlling tea plant diseases.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Subject(s)
Ascomycota , Ergosterol , Gene Expression Regulation, Plant , Plant Leaves , Plant Proteins/genetics , Sulfones , Tea
10.
Phytopathology ; 111(10): 1735-1742, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33687271

ABSTRACT

Gray blight is a serious disease of tea (Camellia sinensis) for which there is currently no effective control or preventive measure apart from fungicides. Screening for effectiveness of a natural antimicrobial against this pathogen and identifying its mode of action could contribute to the management of this disease. Antifungal activity of the antimicrobial ningnanmycin (NNM) from Streptomyces noursei var. xichangensis against the pathogen causing gray blight disease, Pseudopestalotiopsis camelliae-sinensis strain GZHS-2017-010, was confirmed in vitro by the mycelial growth rate method. Optical microscopy, scanning electron microscopy, and transmission electron microscopy were used to observe morphological changes in hyphae of P. camelliae-sinensis treated with NNM. RNA sequencing, bioinformatics, and quantitative real-time PCR were used to identify genes in the hyphae that were differentially expressed in response to treatment with NNM. Thirty-eight genes from 16 pathways, known as targets of antifungal agents, were used to investigate gene expression in hyphae at the half-maximal effective concentration (EC50), EC30, and EC70 for 1, 7, or 14 h. The results indicated that NNM can inhibit the growth of hyphae in vitro, with an EC50 of 75.92 U/ml, inducing morphological changes in organelles, septa, and extracellular polysaccharides, targeting ribosomes to disturb translation in protein synthesis and influencing some biosynthetic functions of the hyphae.


Subject(s)
Antifungal Agents , Plant Diseases , Antifungal Agents/pharmacology , Ascomycota , Cytidine/analogs & derivatives , Tea
11.
Food Sci Nutr ; 8(6): 2780-2788, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32566195

ABSTRACT

Dietary preferences were closely associated with the pathogenesis of numbers of metabolic disorders, in particularly, obesity. Dietary fiber was shown to be capable of preventing weight gain and excessive food intake mainly through stimulating chewing and saliva secretion, and promote satiety signals. In this study, we characterized the "Vitamin World® Vegan Meal" Formula of Feihe, a novel protein-enriched fiber dietary supplement contained potato protease inhibitor II (PI2) that developed. And we demonstrated that this particular fiber formula was effective in preventing weight gain, increasing satiety signals, and reducing food intake in rats in a dosage-dependent manner. Our study provides lines of evidence and would further bolster the use of this nutritious vegan meal in regulating satiety and food intake in clinics.

12.
J Dairy Sci ; 103(4): 3017-3024, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32089302

ABSTRACT

Xinong Saanen goat milk is a major source of milk in the Chinese dairy industry. Milk fat globule membrane (MFGM) proteomes of goat colostrum and mature milk were analyzed and compared using proteomic technology. A total of 543 and 585 proteins were identified in goat colostrum and mature milk, respectively. Functional category analyses revealed that most of the MFGM proteins in both colostrum and mature milk were related to phosphoprotein and acetylation. The biological process of translation, cellular component of extracellular exosome, and molecular function of poly(A) RNA binding were the main gene ontology annotations of both colostrum and mature milk. Pathways associated with disease and genetic information processing involved large number of proteins in colostrum and mature milk, and more metabolism-related pathways were observed in mature milk. Protein-protein interaction network analyses showed that ribosome was abundant in both colostrum and mature milk. Colostrum showed more functions associated with protein processing in the endoplasmic reticulum, whereas mature milk had more oxidative phosphorylation functions. The results could provide further understanding of the unique biological properties of MFGM proteins of goat colostrum and mature milk.


Subject(s)
Colostrum/chemistry , Glycolipids/chemistry , Glycoproteins/chemistry , Goats , Milk/chemistry , Proteome , Animals , Female , Gene Ontology , Goats/metabolism , Lipid Droplets , Membranes , Milk Proteins/analysis , Pregnancy , Tandem Mass Spectrometry
13.
Acta Pharmacol Sin ; 40(7): 919-928, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30315250

ABSTRACT

Autophagy, a form of cellular self-digestion by lysosome, is associated with various disease processes including cancers, and modulating autophagy has shown promise in the treatment of various malignancies. A number of natural products display strong antitumor activity, yet their mechanisms of action remain unclear. To gain a better understanding of how traditional Chinese medicine agents exert antitumor effects, we screened 480 natural compounds for their effects on autophagy using a high content screening assay detecting GFP-LC3 puncta in HeLa cells. Tubeimoside-1 (TBMS1), a triterpenoid saponin extracted from Bolbostemma paniculatum (Maxim) Franquet (Cucurbitaceae), was identified as a potent activator of autophagy. The activation of autophagy by TBMS1 was evidenced by increased LC3-II amount and GFP-LC3 dots, observation of autophagosomes under electron microscopy, and enhanced autophagic flux. To explore the mechanisms underlying TBMS1-activated autophagy, we performed cheminformatic analyses and surface plasmon resonance (SPR) binding assay that showed a higher likelihood of the binding between Akt protein and TBMS1. In three human breast cancer cell lines, we demonstrated that Akt-mTOR-eEF-2K pathway was involved in TBMS1-induced activation of autophagy, while Akt-mediated downregulations of Mcl-1, Bcl-xl, and Bcl-2 led to the activation of apoptosis of the breast cancer cells. Inhibition of autophagy enhanced the cytotoxic effect of TBMS1 via promoting apoptosis. Our results demonstrate the role and mechanism of TBMS1 in activating autophagy, suggesting that inhibition of cytoprotective autophagy may act as a therapeutic strategy to reinforce the activity of TBMS1 against cancers.


Subject(s)
Antineoplastic Agents/pharmacology , Autophagy/drug effects , Saponins/pharmacology , Signal Transduction/drug effects , Triterpenes/pharmacology , Apoptosis/drug effects , Breast Neoplasms/drug therapy , Cell Line, Tumor , Humans , Proto-Oncogene Proteins c-akt/metabolism
14.
Bioresour Technol ; 241: 969-978, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28637164

ABSTRACT

This study aimed to present an anaerobic-multistage anaerobic/oxic (A-MAO) process to treat municipal wastewater. The average COD, NH4+-N, TN, and TP removal efficiency were 91.81%, 96.26%, 83.73% and 94.49%, respectively. Temperature plunge and C/N decrease have a certain impact on the modified process. Characteristics of microbial community, function microorganism, and correlation of microbial community with environmental variables in five compartments were carried out by Illumina Miseq high-throughput sequencing. The differences of microbial community were observed and Blastocatella, Flavobacterium and Pseudomonas were the dominant genus. Nitrosomonas and Nitrospira occupied a dominant position in AOB and NOB, respectively. Rhodospirillaceae and Rhodocyclaceae owned a considerable proportion in phosphorus removal bacteria. DO and COD played significant roles on affecting the microbial components. The A-MAO process in this study demonstrated a high potential for nutrient removal from municipal wastewater.


Subject(s)
Bioreactors , Wastewater , Monoamine Oxidase , Nitrogen , Phosphorus
SELECTION OF CITATIONS
SEARCH DETAIL