Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Nutrients ; 15(20)2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37892502

ABSTRACT

The ketogenic diet (KD) has emerged as a popular weight-loss regimen in recent years. However, it has been confirmed to elicit a mild inflammatory response in the intestinal epithelium and exacerbate various digestive disorders. The severity of acute pancreatitis (AP) is closely associated with the permeability of the intestinal epithelium and gut microbiota, yet the impact of KD on acute pancreatitis remains unclear. In this study, we induced acute pancreatitis using L-arginine in mice fed with KD. The consumption of KD resulted in an elevation of lipopolysaccharide-binding protein (LBP), accompanied by upregulated cytokines (IL-1a, IL-5, IL-12, MIP-1a, and Rantes) and dysfunction of the intestinal barrier both in control and AP groups. The bloom of Lachnospirales and Erysipelotrichales was observed as a specific profile of gut microbiota in KD-fed mice with AP, along with downregulation of carbohydrate metabolism and depletion of short-chain fatty acids (SCFAs). Antibiotic decontamination reduced the cytokine storm and tissue necrosis but did not significantly improve the integrity of the intestinal barrier in KD-fed mice with AP. The overgrowth of Mycoplasmatales in feces and Enterobacterales in colonic tissue appears to explain the limitation of antibiotic treatment to aggravate acute pancreatitis. Butyrate supplementation attenuated the depletion of SCFAs, promoted the intestinal barrier, and reduced the necrotic area in AP mice. The bloom of Bacteroidales and the correlated increase in tryptophan metabolism explain the therapeutic potential of butyrate supplements for acute pancreatitis. In conclusion, our findings suggest that the ketogenic diet exacerbates acute pancreatitis through its impact on the gut microbiota and subsequent disruption of the intestinal barrier, while butyrate supplementation reverses this effect.


Subject(s)
Diet, Ketogenic , Pancreatitis , Mice , Animals , Butyrates/therapeutic use , Pancreatitis/drug therapy , Pancreatitis/chemically induced , Diet, Ketogenic/adverse effects , Acute Disease , Fatty Acids, Volatile/metabolism , Mice, Inbred C57BL
2.
Appl Microbiol Biotechnol ; 106(9-10): 3735-3749, 2022 May.
Article in English | MEDLINE | ID: mdl-35554627

ABSTRACT

The depletion of Bacteroides in the gut is closely correlated with the progression of alcoholic liver disease (ALD). This study aimed to identify Bacteroides strains with protective effects against ALD and evaluate the synergistic effects of Bacteroides and pectin in this disease. Mice were fed Lieber-DeCarli alcohol diet to establish an experimental ALD model and pre-treated with 4 Bacteroides strains. The severity of the liver injury, hepatic steatosis, and inflammation was evaluated through histological and biochemical assays. We found that Bacteroides fragilis ATCC25285 had the best protective effects against ALD strains by alleviating both ethanol-induced liver injury and steatosis. B. fragilis ATCC25285 could counteract inflammatory reactions in ALD by producing short-chain fat acids (SCFAs) and enhancing the intestinal barrier. In the subsequent experiment, the synbiotic combination of B. fragilis ATCC25285 and pectin was evaluated and the underlying mechanisms were investigated by metabolomic and microbiome analyses. The combination elicited superior anti-ALD effects than the individual agents used alone. The synergistic effects of B. fragilis ATCC25285 and pectin were driven by modulating gut microbiota, improving tryptophan metabolism, and regulating intestinal immune function. Based on our findings, the combination of B. fragilis ATCC25285 and pectin can be considered a potential treatment for ALD. KEY POINTS: • B. fragilis ATCC25285 was identified as a protective Bacteroides strain against ALD. • The synbiotic combination of B. fragilis and pectin has better anti-ALD effects. • The synbiotic combination modulates gut microbiota and tryptophan metabolism.


Subject(s)
Bacteroides , Liver Diseases, Alcoholic , Animals , Ethanol/metabolism , Inflammation/metabolism , Liver/metabolism , Liver Diseases, Alcoholic/pathology , Liver Diseases, Alcoholic/prevention & control , Mice , Mice, Inbred C57BL , Pectins/metabolism , Tryptophan/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL