Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Int J Biol Macromol ; 176: 1-12, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33548314

ABSTRACT

SARS-CoV-2 is the etiological agent responsible for the ongoing pandemic of coronavirus disease 2019 (COVID-19). The main protease of SARS-CoV-2, 3CLpro, is an attractive target for antiviral inhibitors due to its indispensable role in viral replication and gene expression of viral proteins. The search of compounds that can effectively inhibit the crucial activity of 3CLpro, which results to interference of the virus life cycle, is now widely pursued. Here, we report that epigallocatechin-3-gallate (EGCG), an active ingredient of Chinese herbal medicine (CHM), is a potent inhibitor of 3CLpro with half-maximum inhibitory concentration (IC50) of 0.874 ± 0.005 µM. In the study, we retrospectively analyzed the clinical data of 123 cases of COVID-19 patients, and found three effective Traditional Chinese Medicines (TCM) prescriptions. Multiple strategies were performed to screen potent inhibitors of SARS-CoV-2 3CLpro from the active ingredients of TCMs, including network pharmacology, molecular docking, surface plasmon resonance (SPR) binding assay and fluorescence resonance energy transfer (FRET)-based inhibition assay. The SPR assay showed good interaction between EGCG and 3CLpro with KD ~6.17 µM, suggesting a relatively high affinity of EGCG with SARS-CoV-2 3CLpro. Our results provide critical insights into the mechanism of action of EGCG as a potential therapeutic agent against COVID-19.


Subject(s)
COVID-19 Drug Treatment , Catechin/analogs & derivatives , Coronavirus 3C Proteases/antagonists & inhibitors , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology , Adult , Antiviral Agents/administration & dosage , Antiviral Agents/pharmacology , COVID-19/epidemiology , COVID-19/metabolism , COVID-19/virology , Catechin/administration & dosage , Catechin/pharmacology , China/epidemiology , Coronavirus 3C Proteases/chemistry , Coronavirus 3C Proteases/metabolism , Female , Fluorescence Resonance Energy Transfer/methods , Humans , Male , Medicine, Chinese Traditional/methods , Middle Aged , Molecular Docking Simulation/methods , Pandemics , Protease Inhibitors/administration & dosage , Protease Inhibitors/pharmacology , Retrospective Studies , Virus Replication/drug effects , Young Adult
2.
J Virol ; 91(5)2017 03 01.
Article in English | MEDLINE | ID: mdl-28031371

ABSTRACT

Influenza virus RNA-dependent RNA polymerase consists of three viral protein subunits: PA, PB1, and PB2. Protein-protein interactions (PPIs) of these subunits play pivotal roles in assembling the functional polymerase complex, which is essential for the replication and transcription of influenza virus RNA. Here we developed a highly specific and robust bimolecular luminescence complementation (BiLC) reporter system to facilitate the investigation of influenza virus polymerase complex formation. Furthermore, by combining computational modeling and the BiLC reporter assay, we identified several novel small-molecule compounds that selectively inhibited PB1-PB2 interaction. Function of one such lead compound was confirmed by its activity in suppressing influenza virus replication. In addition, our studies also revealed that PA plays a critical role in enhancing interactions between PB1 and PB2, which could be important in targeting sites for anti-influenza intervention. Collectively, these findings not only aid the development of novel inhibitors targeting the formation of influenza virus polymerase complex but also present a new tool to investigate the exquisite mechanism of PPIs. IMPORTANCE Formation of the functional influenza virus polymerase involves complex protein-protein interactions (PPIs) of PA, PB1, and PB2 subunits. In this work, we developed a novel BiLC assay system which is sensitive and specific to quantify both strong and weak PPIs between influenza virus polymerase subunits. More importantly, by combining in silico modeling and our BiLC assay, we identified a small molecule that can suppress influenza virus replication by disrupting the polymerase assembly. Thus, we developed an innovative method to investigate PPIs of multisubunit complexes effectively and to identify new molecules inhibiting influenza virus polymerase assembly.


Subject(s)
Antiviral Agents/pharmacology , Influenza A virus/enzymology , Viral Nonstructural Proteins/metabolism , A549 Cells , Animals , Dogs , Drug Evaluation, Preclinical , HEK293 Cells , Humans , Influenza A virus/drug effects , Influenza, Human/drug therapy , Influenza, Human/virology , Madin Darby Canine Kidney Cells , Protein Interaction Mapping , Protein Multimerization/drug effects
3.
Sci China Life Sci ; 58(9): 882-8, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26219513

ABSTRACT

The human influenza A (H3N2) virus dominated the 2014-2015 winter season in many countries and caused massive morbidity and mortality because of its antigenic variation. So far, very little is known about the antigenic patterns of the recent H3N2 virus. By systematically mapping the antigenic relationships of H3N2 strains isolated since 2010, we discovered that two groups with obvious antigenic divergence, named SW13 (A/Switzerland/9715293/2013-like strains) and HK14 (A/Hong Kong/5738/2014-like strains), co-circulated during the 2014-2015 winter season. HK14 group co-circulated with SW13 in Europe and the United States during this season, while there were few strains of HK14 in mainland China, where SW13 has dominated since 2012. Furthermore, we found that substitutions near the receptor-binding site on hemagglutinin played an important role in the antigenic variation of both the groups. These findings provide a comprehensive understanding of the recent antigenic evolution of H3N2 virus and will aid in the selection of vaccine strains.


Subject(s)
Antigenic Variation , Antigens, Viral/immunology , Influenza A Virus, H3N2 Subtype/genetics , Influenza, Human/virology , Amino Acid Sequence , Amino Acids/chemistry , Antigens, Viral/genetics , Binding Sites , China , Computer Simulation , Epidemics , Epitopes/chemistry , Glycosylation , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Humans , Influenza Vaccines , Influenza, Human/epidemiology , Molecular Sequence Data , Phylogeny , Seasons , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL