Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
Food Chem ; 418: 135881, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-36966721

ABSTRACT

Vegetable oils are usually cocontaminated with different mycotoxins, including aflatoxins and zearalenone, which cause significant food safety issues. Establishment of multitarget, high-efficiency, and low-cost adsorption methods are considered to be ideal solutions for mycotoxin removal in vegetable oils. In this study, we used metal-organic frameworks (MOFs) were used for the simultaneous removal of aflatoxins and zearalenone from vegetable oils. The results showed that MOF-235 simultaneously removed, within 30 min, more than 96.1% of aflatoxins and 83.3% of zearalenone from oils, and oils treated with MOF-235 exhibited di minimis cytotoxicity. Thus, synthesized MOF-235 exhibited sufficient efficacy to remove the targeted residues, as well as safety and reusability, which could be applied as a novel potential adsorbent in the removal of multiple mycotoxins from contaminated vegetable oils.


Subject(s)
Aflatoxins , Metal-Organic Frameworks , Mycotoxins , Zearalenone , Aflatoxin B1 , Plant Oils
2.
Oxid Med Cell Longev ; 2023: 1464853, 2023.
Article in English | MEDLINE | ID: mdl-36647427

ABSTRACT

Background and Aims: Endotoxemia (ET) is a common critical illness in patients receiving intensive care and is associated with high mortality and prolonged hospital stay. The intestinal epithelial cell dysfunction is regarded as the "engine" of deteriorated ET. Although electroacupuncture (EA) can mitigate endotoxin-induced intestinal epithelial cell dysfunction in ET, the mechanism through which EA improves endotoxin-induced intestinal injury for preventing ET deterioration needs further investigation. Methods: An in vivo ET model was developed by injecting lipopolysaccharide (LPS) in wild-type and PINK1-knockout mice. An in vitro model was also established by incubating epithelial cells in the serum samples obtained from both groups of mice. Hemin and zinc protoporphyrin IX (ZnPP) were applied to activate or inhibit heme oxygenase 1 (HO-1) production. EA treatment was performed for 30 min consecutively for 5 days before LPS injection, and on the day of the experiment, EA was performed throughout the process. Samples were harvested at 6 h after LPS induction for analyzing tissue injury, oxidative stress, ATP production, activity of diamine oxidase (DAO), and changes in the levels of HO-1, PTEN-induced putative kinase 1 (PINK1), mitochondrial fusion and fission marker gene, caspase-1, and interleukin 1 beta (IL-1ß). Results: In the wild-type models (both in vivo and vitro), EA alleviated LPS-induced intestinal injury and mitochondrial dysfunction, as indicated by decreased reactive oxygen species (ROS) production and oxygen consumption rate (OCR) and reduced levels of mitochondrial fission proteins. EA treatment also boosted histopathological morphology, ATP levels, DAO activity, and levels of mitochondrial fusion proteins in vivo and vitro. The effect of EA was enhanced by hemin but suppressed by Znpp. However, EA + AP, Znpp, or hemin had no effects on the LPS-induced, PINK1-knocked out mouse models. Conclusion: EA may improve the HO-1/PINK1 pathway-mediated mitochondrial dynamic balance to protect the intestinal barrier in patients with ET.


Subject(s)
Electroacupuncture , Endotoxemia , Heme Oxygenase-1 , Protein Kinases , Animals , Mice , Adenosine Triphosphate , Endotoxemia/chemically induced , Endotoxemia/therapy , Endotoxins , Heme Oxygenase-1/metabolism , Hemin/pharmacology , Lipopolysaccharides/toxicity , Mitochondrial Dynamics
SELECTION OF CITATIONS
SEARCH DETAIL