Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Colloid Interface Sci ; 634: 601-609, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36549208

ABSTRACT

In recent years, branched or star-shaped Au nanostructures composed of core and protruding arms have attracted much attention due to their unique optical properties and morphology. As the clinically adapted nanoagent, prussian blue (PB) has recently gained widespread attention in cancer theranostics with potential applications in magnetic resonance (MR) imaging. In this article, we propose a hybrid star gold nanostructure(Au-star@PB)as a novel theranostic agent for T1-weighted magnetic resonance imaging (MRI)/ photoacoustic imaging(PAI) and photothermal therapy (PTT) of tumors. Importantly, the Au-star@PB nanoparticles function as effective MRI/PA contrast agents in vivo by increasing T1-weighted MR/PAI signal intensity and as effective PTT agents in vivo by decreasing the tumor volume in MCF-7 tumor bearing BALB / c mouse model as well as in vitro by lessening tumor cells growth rate. Interestingly, we found the main photothermal effect of Au-star@PB is derived from Au-star, but not PB. In summary, the hybrid structure of Au-star@PB NPs with good biological safety, significant photostability, dual imaging capability, and high therapeutic efficiency, might offer a novel avenue for the future diagnosis and treatment of cancer.


Subject(s)
Nanoparticles , Neoplasms , Mice , Animals , Phototherapy/methods , Nanoparticles/chemistry , Ferrocyanides/chemistry , Magnetic Resonance Imaging/methods , Neoplasms/diagnostic imaging , Neoplasms/therapy , Contrast Media/chemistry , Mice, Inbred BALB C , Cell Line, Tumor , Gold/chemistry
2.
J Agric Food Chem ; 70(38): 11944-11957, 2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36120893

ABSTRACT

Dietary saponins have the potential to ameliorate atherosclerosis (AS). Gypenosides of Gynostemma pentaphyllum (GPs) have been used as functional foods to exhibit antiatherosclerotic activity. The present study aimed to explore the protective effect, underlying mechanism and active substances of GPs on AS in vivo and in vitro. Results demonstrated GPs administration reduced the serum concentrations of TC and LDL-C, upregulated the plasma HDL-C content, inhibited the secretion of ICAM-1, VCAM-1, and MCP-1, and alleviated vascular lesions in VitD3 plus high cholesterol diet-induced AS rats as well as reduced adhesion factors levels in ox-LDL-stimulated HUVECs, which was potentially associated with suppressing PCSK9/LOX-1 pathway. Further activity-guided phytochemical investigation of GPs led to the identification of five new dammarane-type glycosides (1-5) and ten known analogs (6-15). Bioassay evaluation showed compounds 1, 6, 7, 12, 13, and 14 observably reduced the expressions of PCSK9 and LOX-1, as well as the secretion of adhesion factors in injured HUVECs. Molecular docking experiments suggested that the active saponins of GPs might bind to the allosteric pocket of PCSK9 located at the catalytic and C-terminal domains, and 2α-OH-protopanaxadiol-type gypenosides might exert a higher affinity for an allosteric binding site on PCSK9 by hydrogen-bond interaction with ARG-458. These findings provide new insights into the potential nutraceutical application of GPs and their bioactive compounds in the prevention and discovery of novel therapeutic strategies for AS.


Subject(s)
Atherosclerosis , Saponins , Animals , Atherosclerosis/drug therapy , Atherosclerosis/genetics , Cholesterol, LDL , Gynostemma/chemistry , Hydrogen , Intercellular Adhesion Molecule-1 , Molecular Docking Simulation , Plant Extracts/chemistry , Plant Extracts/pharmacology , Proprotein Convertase 9 , Rats , Saponins/chemistry , Scavenger Receptors, Class E , Vascular Cell Adhesion Molecule-1
3.
J Cancer Res Ther ; 8(3): 348-54, 2012.
Article in English | MEDLINE | ID: mdl-23174713

ABSTRACT

Anticancer drugs such as biological therapeutic proteins and peptides are used for treatment of a variety of tumors. However, their wider use has been hindered by their poor bioavailability and the uncontrollable sites of action in vivo. Cancer nano-therapeutics is rapidly progressing, which is being applied for solving some limitations of conventional drug delivery systems. To improve the bio-distribution of anticancer drugs, carbon nanotubes have been used as one of the most effective drug carriers. This review discusses the carbon nanotubes-mediated methods for the delivery of anticancer drugs, with emphasis on the radiation-induced drug-targeted releasing and selective photo-thermal cancer therapy.


Subject(s)
Drug Carriers/therapeutic use , Gamma Rays/therapeutic use , Infrared Rays/therapeutic use , Nanotubes, Carbon , Neoplasms/drug therapy , Humans , Hyperthermia, Induced , Neoplasms/radiotherapy
SELECTION OF CITATIONS
SEARCH DETAIL