Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Biotechnol Genet Eng Rev ; : 1-13, 2023 Mar 23.
Article in English | MEDLINE | ID: mdl-36951429

ABSTRACT

To explore the efficiency of nutritional support therapy . Pharmacists led the construction of an individualized nutritional computing system and were involved in the process of treatment. After obtaining relevant professional knowledge and instruction on how to operate the system, MDT members intervened in the incorrect treatment process during nutritional support therapy. The Department of Radiation Oncology and the Intensive Care Unit (ICU) were selected as pilot departments to compare and analyze the rationality of nutrition risk screening and the use of enteral nutrition (EN) and parenteral nutrition (PN) in treatment before and after intervention. The individualized nutritional computing system significantly improved work efficiency, promoted nutrition risk screening, and saved 10-15 minutes in the treatment of each patient. After intervention in the Department of Radiation Oncology, the use rate of Total Nutrient Admixture (TNA) increased by 7.17%, and the single-bottle infusion rate of PN preparation decreased by 17.94% in patients at risk of malnutrition. The use rate of EN and single-bottle infusion rate of PN preparation in patients without risk of malnutrition decreased by 15.17% and 20.81%, respectively. Overall, 98.75% of ICU patients were at risk of malnutrition. The use rates of EN and TNA increased by 12.79% and 12.14%, respectively, and the single-bottle infusion rate of PN preparation decreased by 10.06%. Streamlined and mobile MDT, the use of an individualized nutritional computing system, and the effective work of pharmacists in the process significantly improved the efficiency and rationality of nutritional support therapy .

2.
Int J Biol Macromol ; 199: 212-222, 2022 Feb 28.
Article in English | MEDLINE | ID: mdl-34995662

ABSTRACT

Radix Hedysari, a well-known traditional Chinese herbal medicine, has a long history as a medicinal plant in China based on its wide spectrum of biological and pharmacological activities. Until now, many chemical constituents have been isolated and identified from Radix Hedysari, such as polysaccharides, flavonoids, phenylpropanoids, trace elements and so on. Of these, Radix Hedysari polysaccharides are one of the most important active compounds of the Radix Hedysari and have various biological activities, including anti-tumor activity, antioxidant activity, anti-diabetic activity, immunity enhancement effect and regulation of intestinal flora. These beneficial biological activities are related to the chemical structure of the Radix Hedysari polysaccharides. The chemical structure of HPS is the basis of its biological activity, which is affected by many factors, such as the composition of monosaccharide, the size of relative molecular weight, the way of glycoside bond connection, the three-dimensional structure of polysaccharide, and so on. Different extraction and separation methods lead to different configurations of polysaccharides and different biological activities of polysaccharides. In general, the bioactivity of polysaccharides showed a certain dose-response or structure-activity relationship. At present, few studies of regarding the structure-function relationships of these polysaccharides have been reported, and it is not easy to relate the structures of HPS to their biological activities. Nevertheless, some relationships can be inferred as follows. This article is aimed to provide a systematic and up-to-date review on the extraction, purification, structural characterization, and biological activities of the Radix Hedysari polysaccharides to support its further therapeutic potentials and sanitarian functions. Furthermore, the possible development and a perspective for future research of Radix Hedysari polysaccharides are also discussed.


Subject(s)
Drugs, Chinese Herbal , Antioxidants/analysis , Antioxidants/pharmacology , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Medicine, Chinese Traditional , Plant Roots/chemistry , Polysaccharides/chemistry
3.
Drug Des Devel Ther ; 15: 4413-4421, 2021.
Article in English | MEDLINE | ID: mdl-34707348

ABSTRACT

BACKGROUND: Yinqin oral liquid (YOL) has curative effect for upper respiratory tract infections, especially for chronic pharyngitis (CP). Since the traditional Chinese herbal formulae are complicated, the pharmacological mechanism of YOL remains unclear. The aim of this work was to explore the active ingredients and mechanisms of YOL against CP. METHODS: First, the profile of putative target of YOL was predicted based on structural and functional similarities of all available YOL components, which were obtained from the Drug Bank database, to the known drugs using TCMSP. The chemical constituents and targets of honeysuckle, scutellaria, bupleurum and cicada were searched by TCMSP, CTD, GeneCards and other databases were used to query the CP-related genes, which were searched by UniProt database. Thereafter, the interactions network between compounds and overlapping genes was constructed, visualized, and analyzed by Cytoscape software. Finally, pathway enrichment analysis of overlapping genes was carried out on Database for Annotation, Visualization, and Integrated Discovery (DAVID) platform. RESULTS: The pathway enrichment analysis showed 55 compounds and 113 corresponding targets in the compound-target network, and the key targets involved PTGS1, ESR2, GSK3ß, NCOA2, ESR1. The PPI core network contained 30 proteins, including VEGFA, IL6, ESR1, RELA and HIF1A. A total of 148 GO items were obtained (p<0.05), 102 entries on biological process (BP), 34 entries on biological process (BP) and 12 entries on cell composition (CC) were included. A total of 46 signaling pathways were obtained by KEGG pathway enrichment screening (p<0.05), involving cancer, PI3K-AKT, hepatitis, proteoglycans, p53, HIF-1 signaling pathways. CONCLUSION: These results collectively indicate YOL (including the main ingredients luteolin and baicalein) as a highly effective therapeutic agent for anti-inflammation, through the NF-kB pathway.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Drugs, Chinese Herbal/pharmacology , Pharyngitis/drug therapy , Administration, Oral , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Chronic Disease , Databases, Factual , Drugs, Chinese Herbal/chemistry , Flavanones/isolation & purification , Flavanones/pharmacology , Luteolin/isolation & purification , Luteolin/pharmacology , Mice , NF-kappa B/metabolism , Network Pharmacology , RAW 264.7 Cells
4.
Biomed Res Int ; 2021: 6471400, 2021.
Article in English | MEDLINE | ID: mdl-34485521

ABSTRACT

OBJECTIVE: Exploration of the underlying molecular mechanism of Jinchan Oral Liquid (JOL) in treating children with the respiratory syncytial virus (RSV) pneumonia to provide new evidence for the clinical application. METHODS: The active components and target genes of JOL were screened by the TCMSP database. The targets of RSV pneumonia were obtained from the GeneCards, OMIM, DrugBank, and PharmGKB database. Then, we constructed the active component-target network and screened the core genes. The overlaps were screened for PPI network analysis, GO analysis, and KEGG analysis. Finally, result validation was performed by molecular docking. RESULTS: According to the screening criteria of the ADME, 74 active compounds of JOL were obtained; after removing redundant targets, we selected 180 potential targets. By screening the online database, 893 RSV pneumonia-related targets were obtained. A total of 82 overlapping genes were chosen by looking for the intersection. The STRING online database was used to acquire PPI relationships, and 16 core genes were obtained. GO and KEGG analyses showed that the main pathways of JOL in treating RSV pneumonia include TNF signaling pathway and IL17 signaling pathway. The molecular docking results showed that the active compounds of JOL had a good affinity with the core genes. CONCLUSION: In this study, we preliminarily discussed the main active ingredients, related targets, and pathways of JOL and predicted the pharmacodynamic basis and the potential therapeutic mechanisms of RSV pneumonia. In summary, the network pharmacology strategy may be helpful for the discovery of multitarget drugs against complex diseases.


Subject(s)
Drugs, Chinese Herbal/pharmacology , Gene Regulatory Networks/drug effects , Respiratory Syncytial Virus Infections/drug therapy , Respiratory Syncytial Viruses/drug effects , Child , Computational Biology/methods , Databases, Genetic , Drug Development/methods , Drugs, Chinese Herbal/chemistry , Humans , Molecular Docking Simulation , Protein Interaction Maps , Respiratory Syncytial Virus Infections/genetics , Respiratory Syncytial Virus Infections/metabolism , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Viruses/isolation & purification , Signal Transduction
5.
Chin Med ; 15: 46, 2020.
Article in English | MEDLINE | ID: mdl-32426031

ABSTRACT

BACKGROUND: Dendrobii Officinalis Caulis (DC) is a well-known tonic herbal medicine worldwide and has favorable immunomodulatory activity. Various material specifications of DC are available in herbal markets, and DC is ingested by different edible methods. However, whether these specifications and edible methods are suitable or not remains unknown. METHODS: In this study, we evaluated the suitability of four material specifications (fresh stem, dried stem, fengdou and powder) and three edible methods (making tea, soup and medicinal liquor) based on holistic polysaccharide marker (HPM), the major polysaccharide components in DC. First, the HPMs were extracted from the four specifications of DC by the three edible methods in different conditions. Second, qualitative and quantitative characterization of the extracted HPMs was performed using high performance gel permeation chromatography (HPGPC). Third, immunomodulatory activities of the extracted HPMs were evaluated in vivo. RESULTS: The results showed that the HPMs were found to be quantitatively different from various specification of DC and edible methods. In vivo analysis indicated that the HPMs exerted positive effects on innate immune responses by increment in proliferation of splenocytes, secretion of IL-2 and cytotoxicity activity of NK cells. Moreover, the dosage amount of HPM should be defined as a certain range, but not the larger the better, for exerting strong immunological activities. CONCLUSION: According to the both chemical and biological results, fengdou by boiling with water for 4 h is the most recommended specification and edible method for DC.

6.
Chem Biol Interact ; 310: 108745, 2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31299240

ABSTRACT

Ursodeoxycholic acid (UDCA) is a major effective constituent of bear bile powder, which is widely used as function food in China and is documented in the Chinese pharmacopoeia as a traditional Chinese medicine. UDCA has been developed as the only accepted therapy by the US FDA for primary biliary cholangitis. Recently, the US FDA granted accelerated approval to obeticholic acid (OCA), a semisynthetic bile acid derivative from chenodeoxycholic acid, for primary biliary cholangitis. However, some perplexing toxicities of UDCA have been reported in the clinic. The present work aimed to investigate the difference between UDCA and OCA in regard to potential metabolic activation through acyl glucuronidation and hepatic accumulation of consequent acyl glucuronides. Our results demonstrated that the metabolic fates of UDCA and OCA were similar. Both UDCA and OCA were predominantly metabolically activated by conjugation to the acyl glucuronide in human liver microsomes. UGT1A3 played a predominant role in the carboxyl glucuronidation of both UDCA and OCA, while UGT2B7 played a major role in their hydroxyl glucuronidation. Further uptake studies revealed that OATP1B1- and 1B3-transfected cells could selectively uptake UDCA acyl glucuronide, but not UDCA, OCA, and OCA acyl glucuronide. In summary, the liver disposition of OCA is different from that of UDCA due to hepatic uptake, and liver accumulation of UDCA acyl glucuronide might be related to the perplexing toxicities of UDCA.


Subject(s)
Chenodeoxycholic Acid/analogs & derivatives , Glucuronides/metabolism , Liver-Specific Organic Anion Transporter 1/metabolism , Microsomes, Liver/metabolism , Solute Carrier Organic Anion Transporter Family Member 1B3/metabolism , Ursodeoxycholic Acid/metabolism , Animals , Biological Transport , Chenodeoxycholic Acid/metabolism , Humans , Medicine, Chinese Traditional , Ursidae , Ursodeoxycholic Acid/analogs & derivatives , Ursodeoxycholic Acid/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL