Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
1.
Ecotoxicol Environ Saf ; 272: 116072, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38342011

ABSTRACT

Triptolide (TP) is the major bioactive component of traditional Chinese medicine Tripterygium wilfordii Hook. F., a traditional Chinese medicinal plant categorized within the Tripterygium genus of the Celastraceae family. It is recognized for its therapeutic potential in addressing a multitude of diseases. Nonetheless, TP is known to exhibit multi-organ toxicity, notably hepatotoxicity, which poses a significant concern for the well-being of patients undergoing treatment. The precise mechanisms responsible for TP-induced hepatotoxicity remain unresolved. In our previous investigation, it was determined that TP induces heightened hepatic responsiveness to exogenous lipopolysaccharide (LPS). Additionally, natural killer (NK) cells were identified as a crucial effector responsible for mediating hepatocellular damage in this context. However, associated activating receptors and the underlying mechanisms governing NK cell represented innate lymphoid cell (ILC) activation remained subjects of inquiry and were not yet investigated. Herein, activating receptor Killer cell lectin like receptor K1 (NKG2D) of group 1 ILCs was specifically upregulated in TP- and LPS-induced acute liver failure (ALF), and in vivo blockade of NKG2D significantly reduced group 1 ILC mediated cytotoxicity and mitigated TP- and LPS-induced ALF. NKG2D ligand UL16-binding protein-like transcript 1 (MULT-1) was found upregulated in liver resident macrophages (LRMs) after TP administration, and LRMs did exhibit NK cell activating effect. Furthermore, M1 polarization of LRMs cells was observed, along with an elevation in intracellular tumor necrosis factor (TNF)-α levels. In vivo neutralization of TNF-α significantly alleviated TP- and LPS-induced ALF. In conclusion, the collaborative role of group 1 ILCs and LRMs in mediating hepatotoxicity was confirmed in TP- and LPS-induced ALF. TP-induced MULT-1 expression in LRMs was the crucial mechanism in the activation of group 1 ILCs via MULT-1-NKG2D signal upon LPS stimulation, emphasizing the importance of infection control after TP administration.


Subject(s)
Chemical and Drug Induced Liver Injury , Diterpenes , Phenanthrenes , Animals , Humans , Mice , NK Cell Lectin-Like Receptor Subfamily K , Lipopolysaccharides/toxicity , Immunity, Innate , Phenanthrenes/toxicity , Epoxy Compounds/toxicity , Killer Cells, Natural , Macrophages , Chemical and Drug Induced Liver Injury/etiology
2.
Food Funct ; 15(5): 2628-2644, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38358014

ABSTRACT

As one of the most significant pathological changes of diabetic nephropathy (DN), tubulointerstitial fibrosis (TIF) had a close relationship with tubulointerstitial inflammation (TI), and the occurrence of TI could have resulted from the disrupted tight junctions (TJs) of renal tubular epithelial cells (RTECs). Studies have demonstrated that sodium butyrate (NaB), a typical short chain fatty acid (SCFA), played an important regulatory role in intestinal TJs and inflammation. In this study, our in vivo and in vitro results showed that accompanied by TI, renal tubular TJs were gradually disrupted in the process of DN-related TIF. In HG and LPS co-cultured HK-2 cells and db/db mice, NaB treatment regained the TJs of RTECs via the sphingosine 1-phosphate receptor-1 (S1PR1)/AMPK signaling pathway, relieving inflammation. Small interfering RNA of S1PR1, S1PR1 antagonist W146 and agonist SEW2871, and AMPK agonist AICAR were all used to further confirm the essential role of the S1PR1/AMPK signaling pathway in NaB's TJ protection in RTECs in vitro. Finally, NaB administration not only improved the renal function and TIF, but also relieved the TI of db/db mice. These findings suggested that the use of NaB might be a potential adjuvant treatment strategy for DN-associated TIF, and this protective effect was linked to the TJ modulation of RTECs via the S1PR1/AMPK signaling pathway, leading to the improvement of TI.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Mice , Animals , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/metabolism , Butyric Acid/pharmacology , Butyric Acid/metabolism , AMP-Activated Protein Kinases/metabolism , Tight Junctions/metabolism , Epithelial Cells/metabolism , Fibrosis , Diabetes Mellitus/metabolism
3.
Xenobiotica ; 54(2): 83-94, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38164702

ABSTRACT

Indirubin is the main component of the traditional Chinese medicine Indigo naturalis (IN), a potent agonist of aryl hydrocarbon receptors (AhRs). In China, IN is used to treat psoriasis and ulcerative colitis, and indirubin is used for the treatment of chronic myelogenous leukaemia. However, IN and indirubin have adverse reactions, such as abdominal pain, diarrhoea, and intussusception, and their specific mechanism is unclear.The purpose of our research was to determine the specific mechanism underlying the adverse effects of IN and indirubin. By tracking the modifications in guinea pigs after the intragastric administration of indirubin for 28 days.The results demonstrate that indirubin could accelerate bowel movements and decrease intestinal acetylcholinesterase (AchE) expression. Experiments with NCM460 cells revealed that indirubin significantly reduced the expression of AchE, and the AchE levels were increased after the silencing of AhR and re-exposure to indirubin.This study showed that the inhibition of AchE expression by indirubin plays a key role in the occurrence of adverse reactions to indirubin and that the underlying mechanism is related to AhR-mediated AchE downregulation.


Subject(s)
Acetylcholinesterase , Psoriasis , Guinea Pigs , Animals , Indoles/pharmacology , Indoles/metabolism , Indigo Carmine , Receptors, Aryl Hydrocarbon/metabolism
4.
Toxicol Lett ; 390: 25-32, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37944651

ABSTRACT

Triptolide (TP) is extracted from the traditional Chinese medicine Tripterygium wilfordii Hook. F. (TWHF). Its severe toxic side effects, especially hepatotoxicity, have limited the clinical application of TP-related drugs. In this study, we investigated the mechanism of the hepatotoxic effects of TP from the perspective that TP inhibited the expression of the pro-survival protein X-linked inhibitor of apoptosis protein (XIAP) and enhanced FasL-mediated apoptosis of hepatocytes. TP and CD95/Fas antibody (Jo-2) were administered by gavage to C57BL/6 mice for 7 consecutive days. After co-administration of TP and Jo-2, mouse livers showed large areas of necrosis and apoptosis and significantly increased Caspase-3 activity. KEGG pathway enrichment analysis indicated that TP may cause the development of liver injury through the apoptotic signaling pathway. Proteinprotein interaction networks showed that XIAP played an essential role in this process. TP reduced the protein expression of XIAP after combination treatment with Jo-2/FasL in vivo/in vitro. TP and FasL co-stimulation significantly increased microRNA-137 (miR-137) levels in AML12 cells, while inhibition of miR-137 expression induced a rebound in XIAP protein expression. In conclusion, TP presensitizes hepatocytes and enhances the sensitivity of hepatocytes to the Fas/FasL pathway by inhibiting the protein expression of XIAP, leading to hepatocyte apoptosis.


Subject(s)
MicroRNAs , X-Linked Inhibitor of Apoptosis Protein , Mice , Animals , X-Linked Inhibitor of Apoptosis Protein/genetics , X-Linked Inhibitor of Apoptosis Protein/metabolism , X-Linked Inhibitor of Apoptosis Protein/pharmacology , Mice, Inbred C57BL , Liver/metabolism , Hepatocytes , Apoptosis , MicroRNAs/metabolism
5.
Chin J Nat Med ; 21(8): 589-598, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37611977

ABSTRACT

Total glucosides of Rhizoma Smilacis Glabrae (RSG) are selective immunosuppressants that exhibit primary efficacy in the treatment of rheumatoid arthritis through targeted inhibition of activated T cells. In this study, we aimed to investigate the potential application of RSG in the treatment of psoriasis and elucidate its mechanism of action and material basis. Our findings revealed significant improvements upon administration of RSG in an imiquimod (IMQ)-induced psoriasis model. These improvements were characterized by a remarkable increase in the number of tail scales in mice and a substantial amelioration of skin erythema, ulceration, and flaking. By transcriptome sequencing and T-cell flow sorting assay, we identified notable effects of RSG on the modulation of various cellular processes. Specifically, RSG prominently down-regulated the Th17/Treg ratio in damaged skin tissues and reduced the proportion of G2 phase cells. Furthermore, RSG exhibited a stimulatory effect on the proliferation and differentiation of epithelial cells. Of particular interest, we discovered that ß-sitosterol, sitostenone, stigmasterol, smiglanin, and cinchonain Ib displayed potent inhibitory effects on the IL-17-mediated inflammatory response in HaCaT cells. In summary, our study highlights the therapeutic potential of RSG in the treatment of psoriasis, attributed to its ability to regulate the Th17/Treg balance. These findings contribute to the development of new indications for RSG and provide a solid theoretical foundation for further exploration in this field.


Subject(s)
Arthritis, Rheumatoid , Psoriasis , Animals , Mice , T-Lymphocytes, Regulatory , Psoriasis/drug therapy , Biological Assay , Glucosides/pharmacology
6.
Cell Biol Toxicol ; 39(6): 2787-2792, 2023 12.
Article in English | MEDLINE | ID: mdl-37115478

ABSTRACT

The development of diabetic nephropathy (DN) could be promoted by the occurrence of tubulointerstitial fibrosis (TIF), which has a close relationship with mitochondrial dysfunction of renal tubular epithelial cells (RTECs). As a key regulator of metabolic homeostasis, Yin Yang 1 (YY1) plays an important role not only in regulating the fibrosis process but also in maintaining the mitochondrial function of pancreatic ß-cells. However, it was not clear whether YY1 participated in maintaining mitochondrial function of RTECs in early DN-associated TIF. In this study, we dynamically detected mitochondrial functions and protein expression of YY1 in db/db mice and high glucose (HG)-cultured HK-2 cells. Our results showed that comparing with the occurrence of TIF, the emergence of mitochondrial dysfunction of RTECs was an earlier even, besides the up-regulated and nuclear translocated YY1. Correlation analysis showed YY1 expressions were negatively associated with PGC-1α in vitro and in vivo. Further mechanism research demonstrated the formation of mTOR-YY1 heterodimer induced by HG up-regulated YY1, the nuclear translocation of which inactivated PGC-1α by binding to the PGC-1α promoter. Overexpression of YY1 induced mitochondrial dysfunctions in normal glucose-cultured HK-2 cells and 8-weeks-old db/m mice. While, dysfunctional mitochondria induced by HG could be improved by knockdown of YY1. Finally, downregulation of YY1 could retard the progression of TIF by preventing mitochondrial functions, resulting in the improvement of epithelial-mesenchymal transition (EMT) in early DN. These findings suggested that YY1 was a novel regulator of mitochondrial function of RTECs and contributed to the occurrence of early DN-associated TIF.

7.
Phytomedicine ; 113: 154703, 2023 May.
Article in English | MEDLINE | ID: mdl-36889164

ABSTRACT

BACKGROUND: Hepatic lipid accumulation was a major promoter for the further development of non-alcoholic fatty liver disease (NAFLD) in type 2 diabetes (T2DM). mTOR/YY1 signaling pathway regulated many metabolic processes in different organs, and played an important role in hepatic lipid metabolism. Thus, targeting mTOR/YY1 signaling pathway might be a novel therapeutic strategy of T2DM-associated NALFD. PURPOSE: To investigate the effects and the mechanism of quercetin against T2DM-associated NAFLD. STUDY DESIGN AND METHODS: The combine abilities of 24 flavonoid compounds with mTOR were detected by computer virtual screening (VS) and molecular modeling. mTOR/YY1 signaling pathway was examined in the liver of db/db mice, and high glucose (HG) and free fatty acid (FFA) co-cultured HepG2 cells. YY1 overexpression lentivirus vector and mTOR specific inhibitor rapamycin were used to further identify the indispensable role of mTOR/YY1 signaling pathway in quercetin's amelioration effect of hepatic lipid accumulation in vitro. Clinical studies, luciferase assay and chromatin immunoprecipitation (ChIP) assay were all carried out to investigate the potential mechanisms by which quercetin exerted its amelioration effect of hepatic lipid accumulation. RESULTS: Quercetin had the strongest ability to combine with mTOR and could competitively occupy its binding pocked. Along with the alleviated hepatic injury by quercetin, mTOR/YY1 signaling pathway was down-regulated in vivo and in vitro. However, the alleviation effect of quercetin against hepatic lipid accumulation was inhibited by YY1 overexpression in vitro. Mechanistically, the down-regulated nuclear YY1 induced by quercetin directly bound to CYP7A1 promoter and activated its transcription, resulting in the restoration of cholesterol homeostasis via the conversion of cholesterol-to-bile acids (BAs). CONCLUSION: The hepatoprotective effect of quercetin on T2DM-associated NAFLD was linked to the restoration of cholesterol homeostasis by the conversion of cholesterol-to-BAs via down-regulating mTOR/YY1 signaling pathway, leading to the increased CYP7A1 activity.


Subject(s)
Diabetes Mellitus, Type 2 , Non-alcoholic Fatty Liver Disease , Mice , Animals , Non-alcoholic Fatty Liver Disease/drug therapy , Quercetin/pharmacology , Quercetin/therapeutic use , Bile Acids and Salts/metabolism , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Liver/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Cholesterol/metabolism , Lipid Metabolism , Cholesterol 7-alpha-Hydroxylase/metabolism
8.
Phytomedicine ; 111: 154659, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36641979

ABSTRACT

BACKGROUND: The emergence of tubulointerstitial inflammation (TI) could accelerate the development of tubulointerstitial fibrosis (TIF) of diabetic nephropathy (DN). Yin Yang 1 (YY1) was a new pro-inflammatory mediator and became the important target of DN-related TIF. Quercetin performed an effective role in anti-inflammation and was probable to bind to YY1. However, the role of YY1 in quercetin's anti-inflammatory effect on DN-related TIF was uncovered. PURPOSE: To investigate the potential effect and mechanism of quercetin against DN-related TI. STUDY DESIGN AND METHODS: The protein levels of YY1 were examined in the renal tubular epithelial cells (RTECs) of db/db mice and HG-cultured HK-2 cells. Molecular modeling studies and YY1 overexpression lentivirus vector were selected to further confirm the indispensable part of YY1 in quercetin's TI protection in vitro. Luciferase assay and chromatin immunoprecipitation (ChIP) assay were carried out to identify whether YY1 directly regulated IL-6/STAT3 signaling by binding to the IL-6 promoter in quercetin's TI protection in vitro. At last, the important role of YY1-mediated IL-6/STAT3 signaling in quercetin's TIF protection effect was further identified by using of YY1 overexpression lentivirus vector and IL-6 specific inhibitor tocilizumab. RESULTS: Along with the alleviated tubulointerstitial injury by quercetin in the RTECs of db/db mice and HK-2 cells stimulated by HG, YY1-mediated IL-6/STAT-3 pathway involved in TI protection of quercetin in vivo and in vitro. Quercetin bound to YY1 and decreased its protein expression, and YY1 directly suppressed IL-6 transcription by bounding to its promoter, resulting in the alleviation of inflammation by inactivating of IL-6/STAT-3 pathway in vitro. YY1-mediated IL-6/STAT-3 pathway was also indispensable for the alleviation of quercetin on DN-associated TIF. CONCLUSION: YY1 could not be absent from quercetin's anti-inflammatory effect on DN-associated TIF via alleviating IL-6/STAT-3 pathway mediated TI.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Animals , Mice , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/metabolism , Fibrosis , Glucose/metabolism , Interleukin-6/pharmacology , Quercetin/pharmacology , Signal Transduction
9.
Phytomedicine ; 109: 154621, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36610139

ABSTRACT

BACKGROUND: Tripterygium wilfordii Hook. F (TWHF) is used as a traditional Chinese medicine, called thunder god vine, based on its efficacy for treating inflammatory diseases. However, its hepatotoxicity has limited its clinical application. Triptolide (TP) is the major active and toxic component of TWHF. Previous studies reported that a toxic pretreatment dose of TP leads to hepatic intolerance to exogenous lipopolysaccharide (LPS) stimulation, and to acute liver failure, in mice, but the immune mechanisms of TP-sensitised hepatocytes and the TP-induced excessive immune response to LPS stimulation are unknown. PURPOSE: To identify both the key immune cell population and mechanism involved in TP-induced hepatic intolerance of exogenous LPS. STUDY DESIGN: In vitro and in vivo experiments were conducted to investigate the inhibitory signal of natural killer (NK) cells maintained in hepatocytes, and the ability of TP to impair that signal. METHODS: Flow cytometry was performed to determine NK cell activity and hepatocyte histocompatibility complex (MHC) class I molecules expression; the severity of liver injury was determined based on blood chemistry values, and drug- or cell-mediated hepatocellular damage, by measuring lactate dehydrogenase (LDH) release. In vivo H-2Kb transduction was carried out using an adeno-associated viral vector. RESULTS: Interferon (IFN)-γ-mediated necroptosis occurred in C57BL/6N mice treated with 500 µg TP/kg and 0.1 mg LPS/kg to induce fulminant hepatitis. Primary hepatocytes pretreated with TP were more prone to necroptosis when exposed to recombinant murine IFN-γ. In mice administered TP and LPS, the intracellular IFN-γ levels of NK cells increased significantly. Subsequent study confirmed that NK cells were activated and resulted in potent hepatocellular toxicity. In vivo and in vitro TP administration significantly inhibited MHC class I molecules in murine hepatocytes. An in vitro analysis demonstrated the susceptibility of TP-pretreated hepatocytes to NK-cell-mediated cytotoxicity, an effect that was significantly attenuated by the induction of hepatocyte MHC-I molecules by IFN-α. In vivo induction or overexpression of hepatocyte MHC-I also protected mouse liver against TP and LPS-induced injury. CONCLUSION: The TP-induced inhibition of hepatocyte MHC-I molecules expression leads to hepatic intolerance to exogenous LPS and NK-cell mediated cytotoxicity against self-hepatocytes. These findings shed light on the toxicity of traditional Chinese medicines administered for their immunomodulatory effects.


Subject(s)
Carcinoma, Hepatocellular , Diterpenes , Liver Neoplasms , Phenanthrenes , Animals , Mice , Carcinoma, Hepatocellular/metabolism , Histocompatibility Antigens Class I/metabolism , Killer Cells, Natural , Lipopolysaccharides , Liver Neoplasms/metabolism , Mice, Inbred C57BL , Phenanthrenes/pharmacology , Diterpenes/pharmacology
10.
Cell Biol Toxicol ; 39(2): 391-413, 2023 04.
Article in English | MEDLINE | ID: mdl-35445903

ABSTRACT

The development of diabetic nephropathy (DN) could be promoted by the occurrence of tubulointerstitial fibrosis (TIF), which had a closely relationship with mitochondrial dysfunction of renal tubular epithelial cells (RTECs). As a key regulator of metabolic homeostasis, Yin Yang 1 (YY1) played an important role not only in regulating fibrosis process, but also in maintaining mitochondrial function of pancreatic ß cells. However, it was not clear whether YY1 participated in maintaining mitochondrial function of RTECs in early DN-associated TIF. In this study, we dynamically detected mitochondrial functions and protein expression of YY1 in db/db mice and high glucose (HG)-cultured HK-2 cells. Our results showed that comparing with the occurrence of TIF, the emergence of mitochondrial dysfunction of RTECs was an earlier even, besides the up-regulated and nuclear translocated YY1. Correlation analysis showed YY1 expressions were negatively associated with PGC-1α in vitro and in vivo. Further mechanism research demonstrated the formation of mTOR-YY1 heterodimer induced by HG upregulated YY1, the nuclear translocation of which inactivated PGC-1α by binding to the PGC-1α promoter. Overexpression of YY1 induced mitochondrial dysfunctions in normal glucose cultured HK-2 cells and 8-week-old db/m mice. While, dysfunctional mitochondria induced by HG could be improved by knockdown of YY1. Finally, downregulation of YY1 could retard the progression of TIF by preventing mitochondrial functions, resulting in the improvement of epithelial-mesenchymal transition (EMT) in early DN. These findings suggested that YY1 was a novel regulator of mitochondrial function of RTECs and contributed to the occurrence of early DN-associated TIF .


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Mice , Animals , Diabetic Nephropathies/genetics , Diabetic Nephropathies/metabolism , Gene Expression Regulation , Mitochondria/metabolism , Fibrosis , Glucose/pharmacology , Glucose/metabolism , Epithelial-Mesenchymal Transition , Diabetes Mellitus/metabolism , Diabetes Mellitus/pathology
11.
Front Pharmacol ; 13: 1032741, 2022.
Article in English | MEDLINE | ID: mdl-36467101

ABSTRACT

Tripterygium wilfordii multiglycoside (GTW), extracted and purified from the peeled roots of T. wilfordii Hook.f. (TwHF), is a well-known traditional Chinese medicine and applied to various autoimmune diseases clinically. However, it has been reported to cause severe liver injury. At present, the mechanism underlying GTW-induced hepatotoxicity remain poorly defined. Here, we evaluated the effects of GTW on mouse liver and elucidated the associated mechanisms via label-free proteomics combined with bioinformatics analysis. Male C57BL/6J mice were randomly divided into normal group, a low-dose GTW (70 mg/kg) group and a high-dose GTW (140 mg/kg) group. After 1-week administration, GTW dose-dependently induced hepatotoxicity. Further analysis showed that GTW could act on the intestinal immune network for IgA production pathway, which plays an important role in maintaining intestinal homeostasis and influences the crosstalk between gut and liver. Western blots confirmed that GTW could decrease pIgR protein expression in the liver and ileum, and, as a result, the secretion of IgA into gut lumen was reduced. Further validation showed that intestinal barrier integrity was impaired in GTW-treated mice, promoting bacteria transferring to the liver and triggering proinflammatory response. Our study demonstrated that gut-liver axis may play a vital part in the progression of GTW-induced hepatotoxicity, which provides guidance for basic research and clinical application of GTW.

12.
Article in English | MEDLINE | ID: mdl-36193146

ABSTRACT

Bakuchiol (BAK) is an abundant natural compound. BAK has been reported to have several biological activities such as anticancer, antiaging, anti-inflammatory, and prevention of bone loss. However, it causes hepatotoxicity, the mechanism of which is not known. In this study, we explored the mechanism of BAK hepatotoxicity by treating rats with 52.5 mg/kg and 262.5 mg/kg of BAK, administered continuously for 6 weeks. We examined the liver pathology and biochemical composition of bile to determine toxicity. Mechanisms of BAK hepatotoxicity were analyzed based on relative and absolute quantification (iTRAQ) protein equivalent signatures and validated in vitro using LO2 cells. iTRAQ analysis revealed 281 differentially expressed proteins (DEPs) in liver tissue of the BAK-treated group, of which 215 were upregulated, and 66 were downregulated. GO and KEGG enrichment analysis revealed that bile secretion, lipid metabolism, and cytochrome P450 signaling pathways were enriched in DEPs. Among them, peroxisome proliferator-activated receptor α (PPARα), farnesoid X receptor (FXR), and cholesterol 7α-hydroxylase (CYP7a1) were closely associated with the development and progression of BAK-induced hepatic metabolic dysfunction and abnormal bile metabolism. This study shows that BAK can induce hepatotoxicity through multiple signaling pathways.

13.
Front Nutr ; 9: 968868, 2022.
Article in English | MEDLINE | ID: mdl-36105574

ABSTRACT

Objective: To compare the serum 25-OH-VitD levels, the major marker of vitamin D (VitD) status, between healthy children and children with epilepsy before initiation of and during anti-seizure medications (ASMs) treatment and to evaluate the potential influence factors on 25-OH-VitD levels. Another major aim was to assess the potential role of VitD supplementation. Methods: For comparison, we finally enrolled and collected data from 6,338 healthy children presenting to Health Care Department and 648 children visiting primary care pediatricians with symptoms of epilepsy in Children's Hospital of Nanjing Medical University from January 2019 to June 2021. The demographic and biochemical characteristics of each child were extracted from the hospital information system. Results: Serum 25-OH-VitD levels in 648 children with epilepsy were significantly lower than those of 6,338 healthy children (P < 0.0001), and the percentage of VitD insufficiency and deficiency status in pediatric patients was 49.19%. Of note, the serum 25-OH-VitD levels in children with newly diagnosed epilepsy before receiving any ASMs treatment were also significantly lower than those in healthy controls. Interestingly, ASMs therapy, alone or in combination, did not consistently reduce baseline serum VitD levels in children with epilepsy. The lower serum VitD levels in pediatric patients than those in healthy children might be related to the disease itself, rather than the ASMs treatment. As expected, VitD supplementation substantially increased the serum 25-OH-VitD levels (P < 0.0001). More critically, children with epilepsy receiving VitD supplementation achieved good seizure control in our study. Significance: In this retrospective study, the childhood epilepsy before initiation of and during ASMs treatment decreased the serum 25-OH-VitD concentrations, suggesting a clear association between epileptic disease and the risk of VitD deficiency. ASMs coadministration and long-term valproic acid treatment did not worse VitD-deficiency status, but in the small group receiving VitD supplementation, there was a significant improvement in reduction of seizure frequency. Therefore, pediatric clinicians are urged to raise public awareness of epilepsy-associated VitD deficiency.

14.
Chin J Nat Med ; 20(9): 656-668, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36162951

ABSTRACT

Diabetic nephropathy (DN) is one of the most common complications of diabetes mellitus, which is characterized in renal tubulointerstitial fibrosis (TIF). The current study was designed to investigate the protective effect of Jujuboside A (Ju A) on TIF in type 2 diabetes (T2DM) mice, and explore its underlying anti-fibrosis mechanism. A mouse T2DM model was established using high fat diet (HFD) feeding combined with intraperitoneal injection of streptozotocin (STZ). Then, diabetic mice were treated with Ju A (10, 20 and 40 mg·kg-1·d-1, i.g.) for 12 weeks. Results showed that administration of Ju A not only down-regulated fasting blood glucose (FBG) levels, but also improved hyperlipidemia and renal function in diabetic mice. Moreover, the reduced ECM accumulation was observed in the renal cortex of Ju A treated diabetic mice, while the TIF progression was also attenuated by Ju A through blocking the epithelial-to-mesenchymal transition (EMT) of renal tubular epithelial cells (RTECs). Further mechanism studies showed that Ju A treatment effectively down-regulated the protein expression and subsequent nuclear translocation of Yin Yang 1 (YY1) in the renal cortex of diabetic mice, and reduced the levels of transforming growth factor-ß1 (TGF-ß1) in the serum and renal cortex of Ju A treated mice. According to invitro studies, the up-regulated YY1/TGF-ß1 signaling pathway was restored by Ju A in high glucose (HG) cultured HK-2 cells. Taken together, these findings demonstrated that Ju A can ameliorate the TIF of DN through down-regulating the YY1/TGF-ß1 signaling pathway.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Diabetic Nephropathies , Animals , Blood Glucose , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/metabolism , Fibrosis , Mice , Saponins , Signal Transduction , Streptozocin , Transforming Growth Factor beta1/genetics , Transforming Growth Factor beta1/metabolism
15.
Zhongguo Zhong Yao Za Zhi ; 47(15): 4183-4189, 2022 Aug.
Article in Chinese | MEDLINE | ID: mdl-36046909

ABSTRACT

This study aims to establish an ultra-high performance liquid chromatography-tandem mass spectrometry(UHPLC-MS/MS) method for determining the concentrations of triptolide(TP) in plasma and liver, and to explore the toxicokinetics of TP and the relationship between TP exposure and liver injury in C57 BL/6 mice, so as to provide reference for dissecting the toxicity mechanism of TP. The liquid chromatography was conducted with ZORBAX SB-C_(18) column(3.0 mm×100 mm, 3.5 µm) and the mobile phase of methanol-0.05 mmol·L~(-1) ammonium acetate. Electrospray ionization(ESI) and multiple reaction monitoring(MRM) mode were employed for mass spectrometry. After oral administration of TP(toxic dose 600 µg·kg~(-1)), the blood and liver tissues of the C57 BL/6 mice were collected at different time points to measure the TP concentrations in plasma and liver tissues. Furthermore, the blood biochemical indexes, including alkaline phosphatase(ALP), alanine aminotransferase(ALT), aspartate aminotransferase(AST), and total bile acid(TBA), were determined. After being processed by DAS 2.0, the experiment data showed that the TP in mice had the toxicokinetic parameters of T_(max)=5 min, C_(max)=14.38 ng·mL~(-1), t_(1/2)=0.76 h, AUC_(0-t)=5.63 h·ng·mL~(-1), MRT_(0-t)=0.56 h, and CL_(Z/F)=103.19 L·h~(-1)·kg~(-1). The trend of TP concentration in mouse liver tissue was consistent with that in plasma. The concentration of TP peaked at the time point of 5 min and then decreased until TP was completely metabolized. The plasma biochemical indexes(ALT, AST, ALP, and TBA) showed no significant changes within 3 h after TP administration. TP had high clearance rate and short residence time and did not significantly increase the blood biochemical indexes in mice. The results suggested that the exposure amount of free TP in vivo cannot directly cause liver injury, which might be caused by the binding of TP to some substances or the stimulation of inflammation and immune response.


Subject(s)
Liver , Tandem Mass Spectrometry , Animals , Chromatography, High Pressure Liquid/methods , Diterpenes , Epoxy Compounds , Mice , Phenanthrenes , Tandem Mass Spectrometry/methods , Toxicokinetics
16.
J Ethnopharmacol ; 295: 115422, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-35654348

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Triptolide (TP) is a major active ingredient and toxic component of Tripterygium wilfordii Hook F (TWHF), which exhibits multiple activities and remarkable hepatotoxicity, the latter of which limits its clinical application due to the risk of liver injury. Previous research has revealed the hepatotoxicity of TP resulting in liver hypersensitivity upon lipopolysaccharide (LPS) stimulation. However, existing research has not elucidated the potential immune mechanism such as Th17/Treg imbalance in TP-induced hepatic excessive immune response to exogenous LPS. AIM OF THE STUDY: To investigate the role of Th17/Treg imbalance in TP-induced hepatic excessive immune response to exogenous LPS. MATERIALS AND METHODS: Mice were administered with TP, LPS, neutralization antibody and small molecule inhibitor respectively. Serum transaminase level was measured to determine the severity of liver injury. Frequencies of liver Th17 and Treg cells were analyzed by flow cytometry. Serum cytokine levels were performed by ELSIA, and mRNA levels of liver cytokine were performed by qPCR. The status of neutrophil infiltration was performed by myeloperoxidase (MPO) IHC measurement. Morphological observation of liver was performed by hematoxylin and eosin (H&E) staining. RESULTS: Mice given a single intragastric dose of TP (500 µg/kg) developed lethal fulminant hepatitis following intraperitoneal injection of LPS (0.1 mg/kg), characterized by low survival rate, severe liver injury, high levels of inflammation and neutrophil infiltration. Hepatic Th17/Treg imbalance emerged together with liver injury in these mice. Neutralization of IL-17A attenuated the liver injury and ameliorated the neutrophil infiltration. The TP-induced alteration of hepatic Th17/Treg balance was closely related to the outcome of immune-mediated acute liver injury triggered by LPS. Pretreatment with the STAT3 inhibitor AG490 effectively restored Th17/Treg balance, significantly reducing the production of IL-17A and finally attenuating the degree of liver injury. CONCLUSION: Hepatic Th17/Treg imbalance not only exacerbates TP- and LPS-induced liver injury, but also serves as an indispensable part in the mechanisms of TP-induced hepatic intolerance to exogenous endotoxin.


Subject(s)
Chemical and Drug Induced Liver Injury , T-Lymphocytes, Regulatory , Animals , Chemical and Drug Induced Liver Injury/etiology , Cytokines/genetics , Cytokines/pharmacology , Diterpenes , Epoxy Compounds , Immunity , Interleukin-17 , Lipopolysaccharides/toxicity , Mice , Mice, Inbred C57BL , Phenanthrenes , Th17 Cells
17.
J Ethnopharmacol ; 291: 115145, 2022 Jun 12.
Article in English | MEDLINE | ID: mdl-35219821

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Shenling Baizhu San (SBS) is commonly employed to improve gastrointestinal dysfunction in patients with ulcerative colitis (UC) in China. SBS combined with mesalamine has been demonstrated to result in improve its curative effects without increasing any adverse reactions, but the underlying mechanism remains unclarified. AIM OF THE STUDY: Our study aimed to illuminate the potential therapeutic effects and mechanisms of SBS, which is a medicine complementary to mesalamine, in the treatment of UC. MATERIALS AND METHODS: A prospective cohort study was conducted to evaluate the efficacy of SBS as a complementary medicine to mesalamine for patients with UC (n = 48). The patients in the control group (n = 24) were given mesalamine alone, whereas those in the experimental group were administered mesalamine combined with SBS. The therapeutic outcome was assessed at 8 weeks. The structures of the gut microbiota (GMB) were characterized by 16S rRNA sequencing, and the microbial tryptophan metabolites were analyzed by UPLC-MS/MS to investigate the mechanism through which SBS achieves its effects. RESULTS: Our results showed that the combination of SBS and mesalamine could significantly improve the clinical signs of UC by achieving mucosal healing and relieving colon damage. Interestingly, the combination of SBS and mesalamine could alter the GMB structures and increase the microbial levels of tryptophan metabolites, including indole-3-propionic acid and indole-3-acetic acid. CONCLUSION: SBS combined with mesalamine is effective in improving the clinical and endoscopic outcomes of patients with UC. SBS, as a complementary therapy to conventional treatment, alleviates UC via the GMB-tryptophan metabolite axis.


Subject(s)
Colitis, Ulcerative , Complementary Therapies , Gastrointestinal Microbiome , Chromatography, Liquid , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/metabolism , Drugs, Chinese Herbal , Humans , Mesalamine/pharmacology , Mesalamine/therapeutic use , Prospective Studies , RNA, Ribosomal, 16S , Tandem Mass Spectrometry , Tryptophan
18.
Chin J Nat Med ; 19(10): 750-757, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34688465

ABSTRACT

Tripterygium wilfordii multiglycoside (GTW) is a commonly used compound for the treatment of rheumatoid arthritis (RA) and immune diseases in clinical practice. However, it can induce liver injury and the mechanism of hepatotoxicity is still not clear. This study was designed to investigate GTW-induced hepatotoxicity in zebrafish larvae and explore the mechanism involved. The 72 hpf (hours post fertilization) zebrafish larvae were administered with different concentrations of GTW for three days and their mortality, malformation rate, morphological changes in the liver, transaminase levels, and histopathological changes in the liver of zebrafish larvae were detected. The reverse transcription-polymerase chain reaction (RT-PCR) was used to examine the levels of microRNA-122 (miR-122) and genes related to inflammation, apoptosis, cell proliferation and liver function. The results showed that GTW increased the mortality of zebrafish larvae, while significant malformations and liver damage occurred. The main manifestations were elevated levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), significant liver atrophy, vacuoles in liver tissue, sparse cytoplasm, and unclear hepatocyte contours. RT-PCR results showed that the expression of miR-122 significantly decreased by GTW; the mRNA levels of inflammation-related genes il1ß, il6, tnfα, il10, cox2 and ptges significantly increased; the mRNA level of tgfß significantly decreased; the mRNA levels of apoptosis-related genes, caspase-8 and caspase-9, significantly increased; the mRNA level of bcl2 significantly decreased; the mRNA levels of cell proliferation-related genes, top2α and uhrf1, significantly reduced; the mRNA levels of liver function-related genes, alr and cyp3c1, significantly increased; and the mRNA level of cyp3a65 significantly decreased. In zebrafish, GTW can cause increased inflammation, enhanced apoptosis, decreased cell proliferation, and abnormal expression of liver function-related genes, leading to abnormal liver structure and function and resulting in hepatotoxicity.


Subject(s)
Chemical and Drug Induced Liver Injury , Tripterygium , Animals , Apoptosis , Chemical and Drug Induced Liver Injury/genetics , Inflammation/chemically induced , Inflammation/genetics , Trans-Activators , Zebrafish/genetics , Zebrafish Proteins
19.
J Ethnopharmacol ; 281: 114521, 2021 Dec 05.
Article in English | MEDLINE | ID: mdl-34390794

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Zhuanggu Guanjie Pill (ZGGJP), a modern Chinese medicine formula, is composed of 12 herbs and has been used to treat osteoporosis in China for almost 30 years. However, no in vivo study of the influences of ZGGJP on the cytochrome P450 (CYP) activities have been reported. AIM OF THE STUDY: The aim of this study was to evaluate the effects of ZGGJP on the activities and the mRNA expression of CYP enzymes (CYP1A2, CYP2B6, CYP2C9, CYP2C19, CYP2D6, CYP2E1 and CYP3A) and their corresponding nuclear receptor levels in rats. MATERIALS AND METHODS: After 7 days oral treatment of ZGGJP at low- and high-dose, cocktail solution was given to rats. Blood samples were collected at series of time points. The plasma concentrations of probe drugs and their corresponding metabolites were determined by UPLC-MS/MS. The influence of ZGGJP on the activities of seven CYPs were evaluated the metabolic ratios (Cmax and AUC0-t) for metabolites/probe drugs. In addition, the effects of ZGGJP on the mRNA expression of CYPs and their corresponding nuclear receptors in rat liver were evaluated by real-time PCR. RESULTS: ZGGJP showed significant inductive effects on CYP1A2 and CYP2B6 of both male and female rats. The influence of ZGGJP on CYP2C9 and CYP3A showed gender difference. ZGGJP could induce the activities of CYP2C9 and CYP3A in female rats, but have no influence on the activities in male rats. ZGGJP had no effects on CYP2D6, CYP2C19 and CYP2E1. The mRNA expression results of CYPs were in accordance with the pharmacokinetic results. The mRNA expression levels of constitutive androstane receptor (CAR) and vitamin D receptor (VDR) were increased significantly in female rats at high dosage, but no significant changes were observed in male rats. CONCLUSION: ZGGJP had inductive effects on CYP1A2 and CYP2B6 in both male and female rats. The results showed that ZGGJP could induce the activities of CYP2C9 and CYP3A in female rats, but had no effect in male rats. This may suggest that the influence of ZGGJP on CYP2C9 and CYP3A exhibit gender difference. The inductive effects of ZGGJP on the activities of CYPs, exhibiting gender difference, may be regulated by CAR and VDR. Therefore, co-administration of ZGGJP with other drugs, especially using CYP2C9 and CYP3A substrates in females, may need dose adjustment to avoid herb-drug interaction.


Subject(s)
Cytochrome P-450 Enzyme Inducers/pharmacology , Cytochrome P-450 Enzyme System/genetics , Drugs, Chinese Herbal/pharmacology , Isoenzymes/genetics , Animals , Cytochrome P-450 Enzyme System/blood , Female , Herb-Drug Interactions , Isoenzymes/blood , Male , Medicine, Chinese Traditional , RNA, Messenger/metabolism , Rats, Wistar , Receptors, Cytoplasmic and Nuclear/blood , Receptors, Cytoplasmic and Nuclear/genetics
20.
Chin J Nat Med ; 19(3): 188-194, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33781452

ABSTRACT

Triptolide (TP), an active component of Tripterygium wilfordiiHook. f. (TWHF), has been widely used for centuries as a traditional Chinese medicine. However, the clinical application of TP has been restricted due to multitarget toxicity, such as hepatotoxicity. In this study, 28 days of oral TP administration (100, 200, or 400 µg·kg-1·d-1) induced the occurrence of cholestasis in female Wistar rats, as evidenced by increased serum levels of γ-glutamyl transpeptidase (γ-GGT), alkaline phosphatase (ALP) and hepatic total bile acids (TBAs). In addition, the heptocyte polarity associated with the strcture of tight junctions (TJs) was disrupted in both rats and sandwich-cultured primary hepatocytes. Immunoblotting revealed decreased expression of the TJ-associated proteins occludin, claudin-1, and zonula occludens protein (ZO-1), and downregulated mRNA levels of these TJs was also detected by real-time PCR. An immunofluorescence analysis showed abnormal subcellular localization of occludin, claudin-1 and ZO-1, which was also confirmed by transmission electron microscopy. Moreover, the concentration of FITC-dextran, a marker of paracellular penetration, was found to increase rapidly in bile increased rapidly (within 6 minutes) after treatment with TP, which indicated the functional impairment of TJs. Taken together, these results suggest that the administration of TP for 28 consecutive days to rats could induce cholestatic injury in the liver, and the increased paracellular permeability might play an important role in these pathological changes.


Subject(s)
Cholestasis , Diterpenes/adverse effects , Liver/drug effects , Phenanthrenes/adverse effects , Tight Junctions , Animals , Cholestasis/chemically induced , Claudin-1 , Epoxy Compounds/adverse effects , Female , Hepatocytes/drug effects , Occludin , Rats , Rats, Wistar , Tight Junctions/pathology , Zonula Occludens-1 Protein
SELECTION OF CITATIONS
SEARCH DETAIL