Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Type of study
Language
Affiliation country
Publication year range
1.
Sci China Life Sci ; 67(5): 1010-1026, 2024 May.
Article in English | MEDLINE | ID: mdl-38489007

ABSTRACT

Alveolar bone regeneration has been strongly linked to macrophage polarization. M1 macrophages aggravate alveolar bone loss, whereas M2 macrophages reverse this process. Berberine (BBR), a natural alkaloid isolated and refined from Chinese medicinal plants, has shown therapeutic effects in treating metabolic disorders. In this study, we first discovered that culture supernatant (CS) collected from BBR-treated human bone marrow mesenchymal stem cells (HBMSCs) ameliorated periodontal alveolar bone loss. CS from the BBR-treated HBMSCs contained bioactive materials that suppressed the M1 polarization and induced the M2 polarization of macrophages in vivo and in vitro. To clarify the underlying mechanism, the bioactive materials were applied to different animal models. We discovered macrophage colony-stimulating factor (M-CSF), which regulates macrophage polarization and promotes bone formation, a key macromolecule in the CS. Injection of pure M-CSF attenuated experimental periodontal alveolar bone loss in rats. Colony-stimulating factor 1 receptor (CSF1R) inhibitor or anti-human M-CSF (M-CSF neutralizing antibody, Nab) abolished the therapeutic effects of the CS of BBR-treated HBMSCs. Moreover, AKT phosphorylation in macrophages was activated by the CS, and the AKT activator reversed the negative effect of the CSF1R inhibitor or Nab. These results suggest that the CS of BBR-treated HBMSCs modulates macrophage polarization via the M-CSF/AKT axis. Further studies also showed that CS of BBR-treated HBMSCs accelerated bone formation and M2 polarization in rat teeth extraction sockets. Overall, our findings established an essential role of BBR-treated HBMSCs CS and this might be the first report to show that the products of BBR-treated HBMSCs have active effects on alveolar bone regeneration.


Subject(s)
Alveolar Bone Loss , Berberine , Bone Regeneration , Macrophage Colony-Stimulating Factor , Macrophages , Mesenchymal Stem Cells , Berberine/pharmacology , Humans , Animals , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Bone Regeneration/drug effects , Macrophages/drug effects , Macrophages/metabolism , Rats , Macrophage Colony-Stimulating Factor/metabolism , Alveolar Bone Loss/metabolism , Male , Rats, Sprague-Dawley , Osteogenesis/drug effects , Cells, Cultured , Proto-Oncogene Proteins c-akt/metabolism , Mice
2.
Cell Death Dis ; 7(10): e2423, 2016 10 20.
Article in English | MEDLINE | ID: mdl-27763638

ABSTRACT

Impaired apoptosis of fibroblast-like synoviocytes (FLSs) causes synovial hyperplasia, facilitating destruction of cartilage and bone in rheumatoid arthritis (RA). Tumor necrosis factor (TNF)-α, a dominant inflammatory mediator in RA pathogenesis, promotes progression of RA symptoms. Prevalence of 1, 25-dihydroxy-vitamin D3 (hereafter termed VD) deficiency is 30-63% in patients with RA. Whether VD leads to apoptosis or enhances TNF-α-mediated apoptosis in FLSs to ameliorate RA is unclear. To determine this, 10-week-old CYP27B1-deficient (CYP27B1-/-) mice with collagen-induced arthritis (CIA) were intraperitoneally treated with 1 µg/kg VD every other day for 9 weeks. RA phenotypes were compared between vehicle-treated CYP27B1-/- and wild-type CIA mice. Human rheumatoid FLS-MH7A cells were treated with Dulbecco's modified Eagle's medium (DMEM) without fetal bovine serum (FBS) for 24 h, then with different concentrations of VD and TNF-α, human vitamin D receptor (VDR) siRNA or the p53 pro-apoptotic inhibitor pifithrin-α. Apoptosis and p53 pro-apoptotic signaling were analyzed. The 19-week-old vehicle-treated CYP27B1-/- CIA mice had increased cumulative arthritis scores and levels of serous rheumatoid factors and C-reactive protein. They had exacerbated articular cartilage and bone destruction, joint space narrowing, joint stiffness, deformity and dysfunction, synovitis and TNF-α secretion, FLS hyperplasia with increased proliferation and decreased apoptosis compared to CIA mice. These RA phenotypes that were aggravated in CIA mice by CYP27B1 deficiency were largely rescued by VD treatment. In vitro, VD with TNF-α treatment upregulated p53 acetylation-mediated apoptosis in MH7A cells by promoting Sirt1 translocation from the nucleus to the cytoplasm. These findings indicated that VD with TNF-α protected against RA by promoting apoptosis of FLSs. The results indicated that clinical administration of VD could be a specific therapy to promote FLS apoptosis and prevent RA progression.


Subject(s)
Apoptosis/drug effects , Arthritis, Rheumatoid/drug therapy , Protective Agents/therapeutic use , Sirtuin 1/metabolism , Synoviocytes/metabolism , Tumor Necrosis Factor-alpha/therapeutic use , Tumor Suppressor Protein p53/metabolism , Vitamin D/analogs & derivatives , 25-Hydroxyvitamin D3 1-alpha-Hydroxylase/metabolism , Acetylation/drug effects , Animals , Arthritis, Experimental/pathology , Arthritis, Rheumatoid/pathology , Bone and Bones/drug effects , Bone and Bones/pathology , Cartilage/drug effects , Cartilage/pathology , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Cell Proliferation/drug effects , Fibroblasts/drug effects , Fibroblasts/metabolism , Fibroblasts/pathology , Humans , Inflammation/pathology , Mice, Inbred BALB C , Protective Agents/pharmacology , Protein Transport/drug effects , Signal Transduction/drug effects , Synovial Membrane/pathology , Synoviocytes/drug effects , Tumor Necrosis Factor-alpha/pharmacology , Vitamin D/blood , Vitamin D/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL