Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
BMC Vet Res ; 20(1): 82, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38448902

ABSTRACT

BACKGROUND: Senecavirus A (SVA) causes an emerging vesicular disease (VD) with clinical symptoms indistinguishable from other vesicular diseases, including vesicular stomatitis (VS), foot-and-mouth disease (FMD), and swine vesicular disease (SVD). Currently, SVA outbreaks have been reported in Canada, the U.S.A, Brazil, Thailand, Vietnam, Colombia, and China. Based on the experience of prevention and control of FMDV, vaccines are the best means to prevent SVA transmission. RESULTS: After preparing an SVA inactivated vaccine (CH-GX-01-2019), we evaluated the immunogenicity of the SVA inactivated vaccine mixed with Imject® Alum (SVA + AL) or Montanide ISA 201 (SVA + 201) adjuvant in mice, as well as the immunogenicity of the SVA inactivated vaccine combined with Montanide ISA 201 adjuvant in post-weaned pigs. The results of the mouse experiment showed that the immune effects in the SVA + 201 group were superior to that in the SVA + AL group. Results from pigs immunized with SVA inactivated vaccine combined with Montanide ISA 201 showed that the immune effects were largely consistent between the SVA-H group (200 µg) and SVA-L group (50 µg); the viral load in tissues and blood was significantly reduced and no clinical symptoms occurred in the vaccinated pigs. CONCLUSIONS: Montanide ISA 201 is a better adjuvant choice than the Imject® Alum adjuvant in the SVA inactivated vaccine preparation, and the CH-GX-01-2019 SVA inactivated vaccine can provide effective protection for pigs.


Subject(s)
Adjuvants, Immunologic , Alum Compounds , Mannitol/analogs & derivatives , Mineral Oil , Oleic Acids , Picornaviridae , Animals , Mice , Swine , Vaccines, Inactivated
2.
Cancer Cell Int ; 24(1): 79, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38374035

ABSTRACT

BACKGROUND: Hepatocellular carcinoma (HCC) cells usually show strong resistance to chemotherapy, which not only reduces the efficacy of chemotherapy but also increases the side effects. Regulation of autophagy plays an important role in tumor treatment. Cell senescence is also an important anti-cancer mechanism, which has become an important target for tumor treatment. Therefore, it is of great clinical significance to find anti-HCC drugs that act through this new mechanism. Platycodin D2 (PD2) is a new saponin compound extracted from the traditional Chinese medicine Platycodon grandiflorum. PURPOSE: Our study aimed to explore the effects of PD2 on HCC and identify the underlying mechanisms. METHODS: First, the CCK8 assay was used to detect the inhibitory effect of PD2 on HCC cells. Then, different pathways of programmed cell death and cell cycle regulators were measured. In addition, we assessed the effects of PD2 on the autophagy and senescence of HCC cells by flow cytometry, immunofluorescence staining, and Western blotting. Finally, we studied the in vivo effect of PD2 on HCC cells by using a mouse tumor-bearing model. RESULTS: Studies have shown that PD2 has a good anti-tumor effect, but the specific molecular mechanism has not been clarified. In this study, we found that PD2 has no obvious toxic effect on normal hepatocytes, but it can significantly inhibit the proliferation of HCC cells, induce mitochondrial dysfunction, enhance autophagy and cell senescence, upregulate NIX and P21, and downregulate CyclinA2. Gene silencing and overexpression indicated that PD2 induced mitophagy in HCC cells through NIX, thereby activating the P21/CyclinA2 pathway and promoting cell senescence. CONCLUSIONS: These results indicate that PD2 induces HCC cell death through autophagy and aging. Our findings provide a new strategy for treating HCC.

3.
Respir Res ; 24(1): 306, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38057804

ABSTRACT

BACKGROUND: Particulate matter (PM) air pollution poses a significant risk to respiratory health and is especially linked with various infectious respiratory diseases such as influenza. Our previous studies have shown that H5N1 virus infection could induce alveolar epithelial A549 cell death by enhancing lysosomal dysfunction. This study aims to investigate the mechanisms underlying the effects of PM on influenza virus infections, with a particular focus on lysosomal dysfunction. RESULTS: Here, we showed that PM nanoparticles such as silica and alumina could induce A549 cell death and lysosomal dysfunction, and degradation of lysosomal-associated membrane proteins (LAMPs), which are the most abundant lysosomal membrane proteins. The knockdown of LAMPs with siRNA facilitated cellular entry of both H1N1 and H5N1 influenza viruses. Furthermore, we demonstrated that silica and alumina synergistically increased alveolar epithelial cell death induced by H1N1 and H5N1 influenza viruses by enhancing lysosomal dysfunction via LAMP degradation and promoting viral entry. In vivo, lung injury in the H5N1 virus infection-induced model was exacerbated by pre-exposure to silica, resulting in an increase in the wet/dry ratio and histopathological score. CONCLUSIONS: Our findings reveal the mechanism underlying the synergistic effect of nanoparticles in the early stage of the influenza virus life cycle and may explain the increased number of respiratory patients during periods of air pollution.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza A Virus, H5N1 Subtype , Influenza A virus , Influenza, Human , Lung Injury , Humans , Animals , Mice , Lung Injury/chemically induced , Lysosomes , Aluminum Oxide , Silicon Dioxide
4.
Integr Cancer Ther ; 22: 15347354231210867, 2023.
Article in English | MEDLINE | ID: mdl-37965730

ABSTRACT

Liver cancer is a common malignant tumor, and its incidence is increasing yearly. Millions of people suffer from liver cancer annually, which has a serious impact on global public health security. Licochalcone A (Lico A), an important component of the traditional Chinese herb licorice, is a natural small molecule drug with multiple pharmacological activities. In this study, we evaluated the inhibitory effects of Lico A on hepatocellular carcinoma cell lines (HepG2 and Huh-7), and explored the inhibitory mechanism of Lico A on hepatocellular carcinoma. First, we evaluated the inhibitory effects of Lico A on hepatocellular carcinoma, and showed that Lico A significantly inhibited and killed HepG2 and Huh-7 cells in vivo and in vitro. Transcriptomic analysis showed that Lico A inhibited the expression of solute carrier family 7 member 11 (SLC7A11), which induced ferroptosis. We confirmed through in vivo and in vitro experiments that Lico A promoted ferroptosis in hepatocellular carcinoma cells by downregulating SLC7A11 expression, thereby inhibiting the glutathione (GSH)-glutathione peroxidase 4 (GPX4) pathway and inducing activation of reactive oxygen species (ROS). In this study, we suggest that Lico A is a potential SLC7A11 inhibitor that induces ferroptotic death in hepatocellular carcinoma cells, thereby providing a theoretical basis for the development of natural small molecule drugs against hepatocellular carcinoma.


Subject(s)
Carcinoma, Hepatocellular , Ferroptosis , Liver Neoplasms , Humans , Reactive Oxygen Species/metabolism , Carcinoma, Hepatocellular/drug therapy , Liver Neoplasms/drug therapy , Amino Acid Transport System y+
5.
Phytomedicine ; 116: 154869, 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37196512

ABSTRACT

BACKGROUND: Neobavaisoflavone (NBIF), a natural active ingredient isolated from Psoralea, possesses anti-inflammatory, anti-cancer, and antioxidant properties; however, the anti-tumor mechanism of NBIF has not been thoroughly investigated, and the inhibitory effect and inhibitory pathway of NBIF on liver cancer are still unknown. PURPOSE: Our study aimed to explore the effects of NBIF on hepatocellular carcinoma and its potential mechanisms. METHODS: First, we detected the inhibition of NBIF on HCC cells by the CCK8 assay and then observed the morphological changes of the cells under the microscope. Besides, we analyzed the changes in the pyroptosis level of NBIF when inhibiting the cells through flow cytometry, immunofluorescence, and a western blot assay. Finally, we used a mouse tumor-bearing model to explore the effects of NBIF in vivo on HCCLM3 cells. RESULTS: NBIF-treated HCC cells exhibited specific features of pyroptosis. Analysis of pyroptosis-related protein levels revealed that NBIF primarily induced pyroptosis in HCC cells via the caspase-3-GSDME signaling pathway. Then, we demonstrated that NBIF impacted the protein expression of Tom20 by producing ROS in HCC cells, hence promoting the recruitment of Bax to mitochondria, activating caspase-3, cutting GSDME, and triggering pyroptosis. CONCLUSIONS: By activating ROS, NBIF was able to trigger pyroptosis in HCC cells, providing an experimental basis for the future study of new treatments for liver cancer.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Mice , Animals , Pyroptosis , Caspase 3/metabolism , Reactive Oxygen Species/metabolism , Carcinoma, Hepatocellular/drug therapy , Liver Neoplasms/drug therapy , Cell Line, Tumor
6.
J Ethnopharmacol ; 312: 116485, 2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37044232

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Fu-Zheng-Xuan-Fei formula (FF) is a prescription that has been clinically used through the basic theory of traditional Chinese medicine (TCM) for treating viral pneumonia. Although FF possesses a prominent clinical therapeutic effect, seldom pharmacological studies have been reported on its anti-influenza B virus (IBV) activity. AIM OF THE STUDY: Influenza is an acute infectious respiratory disease caused by the influenza virus, which has high annual morbidity and mortality worldwide. With a global decline in the COVID-19 control, the infection rate of influenza virus is gradually increasing. Therefore, it is of great importance to develop novel drugs for the effective treatment of influenza virus. Apart from conventional antiviral drugs, TCM has been widely used in the clinical treatment of influenza in China. Therefore, studying the antiviral mechanism of TCM can facilitate the scientific development of TCM. MATERIALS AND METHODS: Madin-Darby canine kidney cells (MDCK) and BALB/c mice were infected with IBV, and FF was added to evaluate the anti-IBV effects of FF both in vitro and in vivo by Western blotting, immunofluorescence, flow cytometry, and pathological assessment. RESULTS: It was found that FF exhibited anti-viral activity against IBV infection both in vivo and in vitro, while inducing macrophage activation and promoting M1 macrophage polarization. In addition, FF effectively regulated the signal transducer and activator of transcription (STAT) signaling pathway-mediated Th17/Treg balance to improve the lung tissue damage caused by IBV infection-induced inflammation. The findings provided the scientific basis for the antiviral mechanism of FF against IBV infection. CONCLUSIONS: This study shows that FF is a potentially effective antiviral drug against IBV infection.


Subject(s)
COVID-19 , Herpesvirus 1, Cercopithecine , Influenza, Human , Orthomyxoviridae Infections , Mice , Animals , Dogs , Humans , Influenza B virus , T-Lymphocytes, Regulatory , Macrophage Activation , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Influenza, Human/drug therapy , Madin Darby Canine Kidney Cells
7.
Sci China Life Sci ; 66(7): 1589-1599, 2023 07.
Article in English | MEDLINE | ID: mdl-36808291

ABSTRACT

The global COVID-19 pandemic emerged at the end of December 2019. Acute respiratory distress syndrome (ARDS) and acute lung injury (ALI) are common lethal outcomes of bacterial lipopolysaccharide (LPS), avian influenza virus, and SARS-CoV-2. Toll-like receptor 4 (TLR4) is a key target in the pathological pathway of ARDS and ALI. Previous studies have reported that herbal small RNAs (sRNAs) are a functional medical component. BZL-sRNA-20 (Accession number: B59471456; Family ID: F2201.Q001979.B11) is a potent inhibitor of Toll-like receptor 4 (TLR4) and pro-inflammatory cytokines. Furthermore, BZL-sRNA-20 reduces intracellular levels of cytokines induced by lipoteichoic acid (LTA) and polyinosinic-polycytidylic acid (poly (I:C)). We found that BZL-sRNA-20 rescued the viability of cells infected with avian influenza H5N1, SARS-CoV-2, and several of its variants of concern (VOCs). Acute lung injury induced by LPS and SARS-CoV-2 in mice was significantly ameliorated by the oral medical decoctosome mimic (bencaosome; sphinganine (d22:0)+BZL-sRNA-20). Our findings suggest that BZL-sRNA-20 could be a pan-anti-ARDS ALI drug.


Subject(s)
Acute Lung Injury , COVID-19 , Influenza A Virus, H5N1 Subtype , Influenza in Birds , Respiratory Distress Syndrome , Mice , Humans , Animals , Lipopolysaccharides , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Influenza A Virus, H5N1 Subtype/metabolism , Pandemics , COVID-19/pathology , SARS-CoV-2/metabolism , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , Acute Lung Injury/genetics , Cytokines/metabolism , Lung/metabolism
8.
Am J Chin Med ; 49(2): 525-541, 2021.
Article in English | MEDLINE | ID: mdl-33641654

ABSTRACT

Gastric cancer is a common malignancy worldwide and is associated with high morbidity and mortality rates. However, very little is known about the underlying mechanism in human gastric cancer cells. Baicalein (BAI), a widely used Chinese herbal medicine, has shown anticancer effects on many types of human cancer cell lines. Here, we investigated the molecular mechanisms underlying BAI action on gastric cancer cell proliferation and migration. The results showed that BAI can expressively inhibit cell proliferation, colony-forming ability and migration ability in a dose-dependent manner, while in the meantime inducing cell apoptosis. Additionally, we found that BAI can suppress FAK and the phosphorylation of PI3K, AKT and mTOR in a dose-dependent manner. Furthermore, BAI significantly inhibited tumor growth in a xenograft model. Also, BAI can inhibit the proliferation and migration of gastric cancer cells and the expression of the pathway by downregulating the expression of FAK. In short, we demonstrated that BAI inhibited gastric cancer cell proliferation and migration through FAK interaction via downregulation in AKT/mTOR signaling, which signifies that BAI may be a latent therapeutic factor for the treatment of gastric cancer patients and that FAK might be a hopeful therapy target for the disease.


Subject(s)
Drugs, Chinese Herbal/pharmacology , Flavanones/pharmacology , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Stomach Neoplasms/drug therapy , TOR Serine-Threonine Kinases/metabolism , Animals , Apoptosis/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Disease Models, Animal , Drugs, Chinese Herbal/chemistry , Flavanones/chemistry , Humans , Mice , Mice, Inbred BALB C
9.
Mediators Inflamm ; 2018: 8982756, 2018.
Article in English | MEDLINE | ID: mdl-30647537

ABSTRACT

Strong inflammation is a prominent pathogenesis of acute hepatitis, which can induce hepatocyte death and lead to liver failure. Lepidium meyenii Walp (Maca) is a traditional herbal medicine mostly used in improving sperm motility and serum hormone levels, etc. However, there are no reports that showed Maca was designed for treating hepatitis so far. Therefore, the protective effects and pharmacological mechanisms of Maca are unknown in hepatitis. In this study, we found that the protective effects of Maca extract ameliorate ConA-induced acute hepatitis (CIH) and underlying mechanisms. We determined that pretreatment with Maca extract significantly suppressed the production of aminotransferases and inflammatory cytokines, including IFN-γ, TNF-α, IL-1ß, IL-2, IL-6, IL-12, and IL-17a, and moderated acute liver injury in CIH. Maca recruited more myeloid-derived suppressor cells (MDSCs) to the liver and suppressed infiltration of natural killer T cells (NKT cells) and macrophages in the liver. Furthermore, our data indicated the molecular mechanism of the inhibitory inflammatory effects of Maca, which should suppress the activation of NF-κB, IFN-γ/STAT1, and IL-6/STAT3 signalings. Collectively, this present research explores Maca as an effective hepatoprotective medicine to inhibit inflammation and liver injury caused by acute hepatitis.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Concanavalin A/toxicity , Hepatitis/drug therapy , Hepatitis/etiology , Lepidium/chemistry , Plant Extracts/therapeutic use , Animals , Female , Medicine, Traditional/methods , Mice , Mice, Inbred BALB C , NF-kappa B/metabolism , Sperm Motility/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL