Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Med Chem ; 62(17): 7769-7787, 2019 09 12.
Article in English | MEDLINE | ID: mdl-31415176

ABSTRACT

While bronchodilators and inhaled corticosteroids are the mainstay of asthma treatment, up to 50% of asthmatics remain uncontrolled. Many studies show that the cysteinyl leukotriene cascade remains highly activated in some asthmatics, even those on high-dose inhaled or oral corticosteroids. Hence, inhibition of the leukotriene C4 synthase (LTC4S) enzyme could provide a new and differentiated core treatment for patients with a highly activated cysteinyl leukotriene cascade. Starting from a screening hit (3), a program to discover oral inhibitors of LTC4S led to (1S,2S)-2-({5-[(5-chloro-2,4-difluorophenyl)(2-fluoro-2-methylpropyl)amino]-3-methoxypyrazin-2-yl}carbonyl)cyclopropanecarboxylic acid (AZD9898) (36), a picomolar LTC4S inhibitor (IC50 = 0.28 nM) with high lipophilic ligand efficiency (LLE = 8.5), which displays nanomolar potency in cells (peripheral blood mononuclear cell, IC50,free = 6.2 nM) and good in vivo pharmacodynamics in a calcium ionophore-stimulated rat model after oral dosing (in vivo, IC50,free = 34 nM). Compound 36 mitigates the GABA binding, hepatic toxicity signal, and in vivo toxicology findings of an early lead compound 7 with a human dose predicted to be 30 mg once daily.


Subject(s)
Anti-Asthmatic Agents/pharmacology , Asthma/drug therapy , Drug Discovery , Enzyme Inhibitors/pharmacology , Glutathione Transferase/antagonists & inhibitors , Pyrazines/pharmacology , Administration, Oral , Animals , Anti-Asthmatic Agents/administration & dosage , Anti-Asthmatic Agents/chemistry , Asthma/metabolism , Disease Models, Animal , Dose-Response Relationship, Drug , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/chemistry , Glutathione Transferase/metabolism , Humans , Molecular Structure , Pyrazines/chemical synthesis , Pyrazines/chemistry , Rats , Structure-Activity Relationship
2.
J Med Chem ; 55(23): 10610-29, 2012 Dec 13.
Article in English | MEDLINE | ID: mdl-23116186

ABSTRACT

A new series of pyrazinecarboxamide DGAT1 inhibitors was designed to address the need for a candidate drug with good potency, selectivity, and physical and DMPK properties combined with a low predicted dose in man. Rational design and optimization of this series led to the discovery of compound 30 (AZD7687), which met the project objectives for potency, selectivity, in particular over ACAT1, solubility, and preclinical PK profiles. This compound showed the anticipated excellent pharmacokinetic properties in human volunteers.


Subject(s)
Acetates/chemistry , Diacylglycerol O-Acyltransferase/antagonists & inhibitors , Enzyme Inhibitors/chemistry , Pyrazines/chemistry , Acetates/pharmacokinetics , Acetates/pharmacology , Animals , Drug Evaluation, Preclinical , Enzyme Inhibitors/pharmacokinetics , Enzyme Inhibitors/pharmacology , Humans , Magnetic Resonance Spectroscopy , Pyrazines/pharmacokinetics , Pyrazines/pharmacology , Rats , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL