Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Curr Biol ; 29(24): 4291-4299.e4, 2019 12 16.
Article in English | MEDLINE | ID: mdl-31786059

ABSTRACT

Mammals maintain a nearly constant core body temperature (Tb) by balancing heat production and heat dissipation. This comes at a high metabolic cost that is sustainable if adequate calorie intake is maintained. When nutrients are scarce or experimentally reduced such as during calorie restriction (CR), endotherms can reduce energy expenditure by lowering Tb [1-6]. This adaptive response conserves energy, limiting the loss of body weight due to low calorie intake [7-10]. Here we show that this response is regulated by the kappa opioid receptor (KOR). CR is associated with increased hypothalamic levels of the endogenous opioid Leu-enkephalin, which is derived from the KOR agonist precursor dynorphin [11]. Pharmacological inhibition of KOR, but not of the delta or the mu opioid receptor subtypes, fully blocked CR-induced hypothermia and increased weight loss during CR independent of calorie intake. Similar results were seen with DIO mice subjected to CR. In contrast, inhibiting KOR did not change Tb in animals fed ad libitum (AL). Chemogenetic inhibition of KOR neurons in the hypothalamic preoptic area reduced the CR-induced hypothermia, whereas chemogenetic activation of prodynorphin-expressing neurons in the arcuate or the parabrachial nucleus lowered Tb. These data indicate that KOR signaling is a pivotal regulator of energy homeostasis and can affect body weight during dieting by modulating Tb and energy expenditure.


Subject(s)
Body Temperature Regulation/genetics , Body Temperature Regulation/physiology , Receptors, Opioid, kappa/metabolism , Analgesics, Opioid/metabolism , Animals , Body Weight/physiology , Brain/metabolism , Caloric Restriction/methods , Energy Intake/physiology , Energy Metabolism/physiology , Female , Hypothalamus/metabolism , Male , Mice , Mice, Inbred C57BL , Neurons/metabolism , Receptors, Opioid, kappa/genetics , Receptors, Opioid, mu/metabolism , Receptors, Opioid, mu/physiology , Weight Loss/physiology
2.
PLoS One ; 6(9): e24132, 2011.
Article in English | MEDLINE | ID: mdl-21931655

ABSTRACT

BACKGROUND: Frontline treatment of small cell lung carcinoma (SCLC) relies heavily on chemotherapeutic agents and radiation therapy. Though SCLC patients respond well to initial cycles of chemotherapy, they eventually develop resistance. Identification of novel therapies against SCLC is therefore imperative. METHODS AND FINDINGS: We have designed a bioluminescence-based cell viability assay for high-throughput screening of anti-SCLC agents. The assay was first validated via standard pharmacological agents and RNA interference using two human SCLC cell lines. We then utilized the assay in a high-throughput screen using the LOPAC(1280) compound library. The screening identified several drugs that target classic cancer signaling pathways as well as neuroendocrine markers in SCLC. In particular, perturbation of dopaminergic and serotonergic signaling inhibits SCLC cell viability. CONCLUSIONS: The convergence of our pharmacological data with key SCLC pathway components reiterates the importance of neurotransmitter signaling in SCLC etiology and points to possible leads for drug development.


Subject(s)
Antineoplastic Agents/pharmacology , Luminescent Measurements/methods , Neurotransmitter Agents/metabolism , Signal Transduction/drug effects , Animals , Cell Line, Tumor , Cell Survival/drug effects , Cisplatin/pharmacology , Dopamine Agents/pharmacology , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical/methods , Glyceraldehyde-3-Phosphate Dehydrogenase (Phosphorylating)/genetics , HEK293 Cells , Humans , Luciferases/genetics , Luciferases/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Mice , RNA Interference , Reverse Transcriptase Polymerase Chain Reaction , Serotonin Agents/pharmacology , Small Cell Lung Carcinoma/genetics , Small Cell Lung Carcinoma/metabolism , Small Cell Lung Carcinoma/pathology , Staurosporine/pharmacology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL