Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Int J Mol Sci ; 23(19)2022 Oct 06.
Article in English | MEDLINE | ID: mdl-36233162

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is characterized by excessive lipid accumulation in the liver. Various mechanisms such as an increased uptake in fatty acids or de novo synthesis contribute to the development of steatosis and progression to more severe stages. Furthermore, it has been shown that impaired lipophagy, the degradation of lipids by autophagic processes, contributes to NAFLD. Through an unbiased lipidome analysis of mouse livers in a genetic model of impaired lipophagy, we aimed to determine the resulting alterations in the lipidome. Observed changes overlap with those of the human disease. Overall, the entire lipid content and in particular the triacylglycerol concentration increased under conditions of impaired lipophagy. In addition, we detected a reduction in long-chain polyunsaturated fatty acids (PUFAs) and an increased ratio of n-6 PUFAs to n-3 PUFAs, which was due to the depletion of n-3 PUFAs. Although the abundance of major phospholipid classes was reduced, the ratio of phosphatidylcholines to phosphatidylethanolamines was not affected. In conclusion, this study demonstrates that impaired lipophagy contributes to the pathology of NAFLD and is associated with an altered lipid profile. However, the lipid pattern does not appear to be specific for lipophagic alterations, as it resembles mainly that described in relation to fatty liver disease.


Subject(s)
Fatty Acids, Omega-3 , Non-alcoholic Fatty Liver Disease , Animals , Autophagy , Fatty Acids/metabolism , Fatty Acids, Omega-3/metabolism , Humans , Lipid Metabolism , Liver/metabolism , Mice , Non-alcoholic Fatty Liver Disease/metabolism , Phosphatidylcholines/metabolism , Phospholipids/metabolism , Triglycerides/metabolism
2.
Antioxidants (Basel) ; 11(5)2022 Apr 28.
Article in English | MEDLINE | ID: mdl-35624726

ABSTRACT

The intake of high-fat diets (HFDs) containing large amounts of saturated long-chain fatty acids leads to obesity, oxidative stress, inflammation, and insulin resistance. The trace element selenium, as a crucial part of antioxidative selenoproteins, can protect against the development of diet-induced insulin resistance in white adipose tissue (WAT) by increasing glutathione peroxidase 3 (GPx3) and insulin receptor (IR) expression. Whether selenite (Se) can attenuate insulin resistance in established lipotoxic and obese conditions is unclear. We confirm that GPX3 mRNA expression in adipose tissue correlates with BMI in humans. Cultivating 3T3-L1 pre-adipocytes in palmitate-containing medium followed by Se treatment attenuates insulin resistance with enhanced GPx3 and IR expression and adipocyte differentiation. However, feeding obese mice a selenium-enriched high-fat diet (SRHFD) only resulted in a modest increase in overall selenoprotein gene expression in WAT in mice with unaltered body weight development, glucose tolerance, and insulin resistance. While Se supplementation improved adipocyte morphology, it did not alter WAT insulin sensitivity. However, mice fed a SRHFD exhibited increased insulin content in the pancreas. Overall, while selenite protects against palmitate-induced insulin resistance in vitro, obesity impedes the effect of selenite on insulin action and adipose tissue metabolism in vivo.

3.
Nutrients ; 10(9)2018 Sep 18.
Article in English | MEDLINE | ID: mdl-30231595

ABSTRACT

While the impact of dietary cholesterol on the progression of atherosclerosis has probably been overestimated, increasing evidence suggests that dietary cholesterol might favor the transition from blunt steatosis to non-alcoholic steatohepatitis (NASH), especially in combination with high fat diets. It is poorly understood how cholesterol alone or in combination with other dietary lipid components contributes to the development of lipotoxicity. The current study demonstrated that liver damage caused by dietary cholesterol in mice was strongly enhanced by a high fat diet containing soybean oil-derived ω6-poly-unsaturated fatty acids (ω6-PUFA), but not by a lard-based high fat diet containing mainly saturated fatty acids. In contrast to the lard-based diet the soybean oil-based diet augmented cholesterol accumulation in hepatocytes, presumably by impairing cholesterol-eliminating pathways. The soybean oil-based diet enhanced cholesterol-induced mitochondrial damage and amplified the ensuing oxidative stress, probably by peroxidation of poly-unsaturated fatty acids. This resulted in hepatocyte death, recruitment of inflammatory cells, and fibrosis, and caused a transition from steatosis to NASH, doubling the NASH activity score. Thus, the recommendation to reduce cholesterol intake, in particular in diets rich in ω6-PUFA, although not necessary to reduce the risk of atherosclerosis, might be sensible for patients suffering from non-alcoholic fatty liver disease.


Subject(s)
Cholesterol, Dietary , Fatty Acids, Omega-6/toxicity , Liver/drug effects , Non-alcoholic Fatty Liver Disease/chemically induced , Soybean Oil/toxicity , Animals , Cell Death/drug effects , Disease Models, Animal , Lipid Peroxidation/drug effects , Liver/metabolism , Liver/pathology , Male , Mice, Inbred C57BL , Mitochondria, Liver/drug effects , Mitochondria, Liver/metabolism , Mitochondria, Liver/pathology , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Oxidative Stress/drug effects
4.
Elife ; 52016 12 19.
Article in English | MEDLINE | ID: mdl-27991852

ABSTRACT

Mg2+ regulates many physiological processes and signalling pathways. However, little is known about the mechanisms underlying the organismal balance of Mg2+. Capitalizing on a set of newly generated mouse models, we provide an integrated mechanistic model of the regulation of organismal Mg2+ balance during prenatal development and in adult mice by the ion channel TRPM6. We show that TRPM6 activity in the placenta and yolk sac is essential for embryonic development. In adult mice, TRPM6 is required in the intestine to maintain organismal Mg2+ balance, but is dispensable in the kidney. Trpm6 inactivation in adult mice leads to a shortened lifespan, growth deficit and metabolic alterations indicative of impaired energy balance. Dietary Mg2+ supplementation not only rescues all phenotypes displayed by Trpm6-deficient adult mice, but also may extend the lifespan of wildtype mice. Hence, maintenance of organismal Mg2+ balance by TRPM6 is crucial for prenatal development and survival to adulthood.


Subject(s)
Embryonic Development , Intestinal Mucosa/enzymology , Intestinal Mucosa/metabolism , Magnesium/metabolism , TRPM Cation Channels/metabolism , Animals , Female , Gene Knockout Techniques , Mice , Placenta/enzymology , Placenta/metabolism , Pregnancy , Survival Analysis , TRPM Cation Channels/genetics , Yolk Sac/enzymology , Yolk Sac/metabolism
5.
Physiol Behav ; 105(3): 791-9, 2012 Feb 01.
Article in English | MEDLINE | ID: mdl-22061427

ABSTRACT

The central melanocortin system regulates lipid metabolism in peripheral tissues such as white adipose tissue. Alterations in the activity of sympathetic nerves connecting hypothalamic cells expressing melanocortin 3/4 receptors (MC3/4R) with white adipocytes have been shown to partly mediate these effects. Interestingly, hypothalamic neurons producing corticotropin-releasing hormone and thyrotropin-releasing hormone co-express MC4R. Therefore we hypothesized that regulation of hypothalamo-pituitary adrenal (HPA) and hypothalamo-pituitary thyroid (HPT) axes activity by the central melanocortin system could contribute to its control of peripheral lipid metabolism. To test this hypothesis, we chronically infused rats intracerebroventricularly (i.c.v.) either with an MC3/4R antagonist (SHU9119), an MC3/4R agonist (MTII) or saline. Rats had been previously adrenalectomized (ADX) and supplemented daily with 1mg/kg corticosterone (s.c.), thyroidectomized (TDX) and supplemented daily with 10 µg/kgL-thyroxin (s.c.), or sham operated (SO). Blockade of MC3/4R signaling with SHU9119 increased food intake and body mass, irrespective of gland surgery. The increase in body mass was accompanied by higher epididymal white adipose tissue (eWAT) weight and higher mRNA content of lipogenic enzymes in eWAT. SHU9119 infusion increased triglyceride content in the liver of SO and TDX rats, but not in those of ADX rats. Concomitantly, mRNA expression of lipogenic enzymes in liver was increased in SO and TDX, but not in ADX rats. We conclude that the HPA and HPT axes do not play an essential role in mediating central melanocortinergic effects on white adipose tissue and liver lipid metabolism. However, while basal hepatic lipid metabolism does not depend on a functional HPA axis, the induction of hepatic lipogenesis due to central melanocortin system blockade does require a functional HPA axis.


Subject(s)
Hypothalamo-Hypophyseal System/physiology , Liver/metabolism , Melanocortins/metabolism , Pituitary-Adrenal System/physiology , Triglycerides/metabolism , Adipocytes, White/drug effects , Adrenalectomy , Adrenocorticotropic Hormone/genetics , Adrenocorticotropic Hormone/metabolism , Animals , Body Weight/drug effects , Corticosterone/administration & dosage , Corticosterone/metabolism , Drug Delivery Systems , Eating/drug effects , Enzyme-Linked Immunosorbent Assay , Gene Expression Regulation/drug effects , Gene Expression Regulation/physiology , Hypothalamo-Hypophyseal System/drug effects , Injections, Intraventricular , Male , Melanocyte-Stimulating Hormones/pharmacology , Neuropeptides/genetics , Neuropeptides/metabolism , Pituitary-Adrenal System/drug effects , Rats , Rats, Wistar , Receptors, Corticotropin/agonists , Receptors, Corticotropin/antagonists & inhibitors , Thyroidectomy , Thyroxine/pharmacology , alpha-MSH/analogs & derivatives , alpha-MSH/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL