Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Comp Med ; 68(4): 256-260, 2018 08 01.
Article in English | MEDLINE | ID: mdl-30017019

ABSTRACT

Female nude mice (J:NU-Foxn1nu; age, 6 wk) were injected with 1 million MCF7 human breast cancer cells in the fourth mammary fat pads and received a 21-d sustained-release estrogen pellet (0.25 mg) subcutaneously in the dorsum of the neck. All mice were maintained in sterile housing and provided sterile water and irradiated rodent chow. Approximately 6 wk after implantation, 4 of the 30 mice showed clinical signs of depression and dehydration. The 2 animals most severely affected were euthanized and presented for necropsy. The urinary bladders of these animals were distended with variable sized white, opaque uroliths. Urinalysis revealed coccal bacteria, erythrocytes, neutrophils and struvite crystals. Urine cultures from both necropsied animals grew heavy, pure growths of Staphylococcus xylosus. The organism was sensitive to all antibiotics tested except erythromycin (intermediate). Analysis of the uroliths revealed 100% struvite composition. Remaining mice in the study were evaluated clinically for hydration status, the ability to urinate, and the presence of palpable stones in the urinary bladder; one additional mouse had a firm, nonpainful bladder (urolithiasis suspected). Given the sensitivity of the organisms cultured from urine samples, the remaining mice were placed on enrofloxacin in the drinking water (0.5 mg/mL). All remaining mice completed the study without further morbidity or mortality. Previous studies have reported the association of estrogen supplementation with urinary bladder pathology, including infection and urolithiasis. Here we present a case of urolithiasis and cystitis in nude mice receiving estrogen supplementation that was associated with Staphylococcus xylosus, which previously was unreported in this context. When assessing these nude mice for urolithiasis, we found that visualizing the stones through the body wall, bladder palpation, and bladder expression were helpful in identifying affected mice.


Subject(s)
Cystitis/microbiology , Staphylococcus/isolation & purification , Urolithiasis/microbiology , Animals , Cystitis/pathology , Estrogens/pharmacology , Female , Humans , MCF-7 Cells , Mice , Mice, Nude , Struvite , Urolithiasis/pathology
2.
Am J Transplant ; 18(8): 1879-1889, 2018 08.
Article in English | MEDLINE | ID: mdl-29464912

ABSTRACT

Islet transplantation has become a well-established therapy for select patients with type 1 diabetes. Viability and engraftment can be compromised by the generation of oxidative stress encountered during isolation and culture. We evaluated whether the administration of BMX-001 (MnTnBuOE-2-PyP5+ [Mn(III) meso-tetrakis-(N-b-butoxyethylpyridinium-2-yl)porphyrin]) and its earlier derivative, BMX-010 (MnTE-2-PyP [Mn(III) meso-tetrakis-(N-methylpyridinium-2-yl)porphyrin]) could improve islet function and engraftment outcomes. Long-term culture of human islets with BMX-001, but not BMX-010, exhibited preserved in vitro viability. Murine islets isolated and cultured for 24 hours with 34 µmol/L BMX-001 exhibited improved insulin secretion (n = 3 isolations, P < .05) in response to glucose relative to control islets. In addition, 34 µmol/L BMX-001-supplemented murine islets exhibited significantly reduced apoptosis as indicated by terminal deoxynucleotidyl transferase dUTP nick end labeling, compared with nontreated control islets (P < .05). Murine syngeneic islets transplanted under the kidney capsule at a marginal dose of 150 islets revealed 58% of 34 µmol/L BMX-001-treated islet recipients became euglycemic (n = 11 of 19) compared with 19% of nontreated control islet recipients (n = 3 of 19, P < .05). Of murine recipients receiving a marginal dose of human islets cultured with 34 µmol/L BMX-001, 92% (n = 12 of 13) achieved euglycemia compared with 57% of control recipients (n = 8 of 14, P = .11). These results demonstrate that the administration of BMX-001 enhances in vitro viability and augments murine marginal islet mass engraftment.


Subject(s)
Apoptosis/drug effects , Biomimetic Materials/pharmacology , Diabetes Mellitus, Experimental/prevention & control , Islets of Langerhans/drug effects , Metalloporphyrins/pharmacology , Animals , Cells, Cultured , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Glucose/pharmacology , Graft Survival , Humans , Insulin/metabolism , Islets of Langerhans/cytology , Islets of Langerhans/metabolism , Islets of Langerhans Transplantation , Male , Mice , Mice, Inbred BALB C , Oxidation-Reduction , Superoxide Dismutase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL